HEALTH MONITORING AND DEGRADATION PROGNOSTICS IN GAS TURBINE ENGINES USING DYNAMIC NEURAL NETWORKS

被引:0
作者
Vatani, A. [1 ]
Khorasani, K. [1 ]
Meskin, N. [2 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
[2] Qatar Univ, Dept Elect Engn, Doha, Qatar
来源
PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 6 | 2015年
关键词
DETERIORATION; LIFE;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper two artificially intelligent methodologies are proposed and developed for degradation prognosis and health monitoring of gas turbine engines. Our objective is to predict the degradation trends by studying their effects on the engine measurable parameters, such as the temperature, at critical points of the gas turbine engine. The first prognostic scheme is based on a recurrent neural network (RNN) architecture. This architecture enables ONE to learn the engine degradations from the available measurable data: The second prognostic scheme is based on a nonlinear auto-regressive with exogenous input (NARX) neural network architecture. It is shown that this network can be trained with fewer data points and the prediction errors are lower as compared to the RNN architecture. To manage prognostic and prediction uncertainties upper and lower threshold bounds are defined and obtained. Various scenarios and case studies are presented to illustrate and demonstrate the effectiveness of our proposed neural network-based prognostic approaches. To evaluate and compare the prediction results between our two proposed neural network schemes, a metric known as the normalized Akaike information criterion (NAIC) is utilized. A smaller NAIC shows a better, a more accurate and a more effective prediction outcome. The NAIC values are obtained for each case and the networks are compared relatively with one another.
引用
收藏
页数:13
相关论文
共 46 条
  • [1] Nonlinear damage models for diagnosis and prognosis in structural dynamic systems
    Adams, DE
    [J]. COMPONENT AND SYSTEMS DIAGNOSTICS, PROGNOSTICS, AND HEALTH MANAGEMENT II, 2002, 4733 : 180 - 191
  • [2] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [3] Akaike H., 1973, 2 INTERNAT SYMPOS IN, P267, DOI [DOI 10.1007/978-1-4612-1694-0_15, 10.1007/978-1-4612-1694-0, 10.1007/978-1-4612-0919-5_38]
  • [4] Aker G. F., 1989, Transactions of the ASME. Journal of Engineering for Gas Turbines and Power, V111, P343
  • [5] [Anonymous], 2001, P 30 TURBOMACHINERY
  • [6] [Anonymous], 2009, 2009 EUROPEAN CONTRO, DOI DOI 10.23919/ECC.2009.7074633
  • [7] [Anonymous], P ASME 2012 INT MECH
  • [8] Barreto G., 2006, NEW LOOK NONLINEAR T, V6, P28
  • [9] A dynamical systems approach to failure prognosis
    Chelidze, D
    Cusumano, JP
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2004, 126 (01): : 2 - 8
  • [10] Chow T.W., 2007, NEURAL NETWORKS COMP, V7