Position vectors of spacelike general helices in Minkowski 3-space

被引:18
作者
Ali, Ahmad T. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
关键词
Minkowski; 3-space; General helix; Intrinsic equations; FIBONACCI;
D O I
10.1016/j.na.2010.04.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the position vectors of a spacelike general helix with respect to the standard frame in Minkowski space E-1(3) are studied in terms of the Frenet equations. First, a vector differential equation of third order is constructed to determine the position vectors of an arbitrary spacelike general helix. In terms of solution, we determine the parametric representation of the general helices from the intrinsic equations. Moreover, we give some examples to illustrate how to find the position vectors of spacelike general helices with a spacelike and timelike principal normal vector. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1118 / 1126
页数:9
相关论文
共 22 条
[11]   On the 3-dimensional k-Fibonacci spirals [J].
Falcon, Sergio ;
Plaza, Angel .
CHAOS SOLITONS & FRACTALS, 2008, 38 (04) :993-1003
[12]   Null helices in Lorentzian space forms [J].
Ferrández, A ;
Giménez, A ;
Lucas, P .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (30) :4845-4863
[13]  
Ilarslan K., 2005, Turk. J. Math, V29, P53
[14]   Position vectors of a timelike and a null helix in Minkowski 3-space [J].
Ilarslan, Kazim ;
Boyacioglu, Oezguer .
CHAOS SOLITONS & FRACTALS, 2008, 38 (05) :1383-1389
[15]   Position vectors of a spacelike W-curve in minkowski space E13 [J].
Ilarslan, Kazim ;
Boyacioglu, Oezguer .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (03) :429-438
[16]  
Kuhnel W., 1999, Differential Geometry: Curves-Surfaces-Manifolds
[17]  
LIPSCHUTZ MM, 1969, SCHUMS OUTLINE THEOR
[18]  
Millman R. S., 1977, Elements of Differential Geometry
[19]  
Oneill Barrett, 1983, Pure and Applied Mathematics
[20]  
Turgut M., 2008, Sci. Magna., V4, P5