Position vectors of spacelike general helices in Minkowski 3-space

被引:18
作者
Ali, Ahmad T. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
关键词
Minkowski; 3-space; General helix; Intrinsic equations; FIBONACCI;
D O I
10.1016/j.na.2010.04.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the position vectors of a spacelike general helix with respect to the standard frame in Minkowski space E-1(3) are studied in terms of the Frenet equations. First, a vector differential equation of third order is constructed to determine the position vectors of an arbitrary spacelike general helix. In terms of solution, we determine the parametric representation of the general helices from the intrinsic equations. Moreover, we give some examples to illustrate how to find the position vectors of spacelike general helices with a spacelike and timelike principal normal vector. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1118 / 1126
页数:9
相关论文
共 22 条
[1]  
ALI AT, 2009, ARXIV09040301V1MATHD
[2]  
ALI AT, 2009, ARXIV09063851V1MATHD
[3]   General helices and a theorem of Lancret [J].
Barros, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (05) :1503-1509
[4]  
Bilici M., 2009, International Mathematical Forum, V31, P1497
[5]   Harmonic curvatures and generalized helices in En [J].
Camci, Cetin ;
Ilarslan, Kazim ;
Kula, Levent ;
Hacisalihoglu, H. Hilmi .
CHAOS SOLITONS & FRACTALS, 2009, 40 (05) :2590-2596
[6]   Helices [J].
Chouaieb, Nadia ;
Goriely, Alain ;
Maddocks, John H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (25) :9398-9403
[7]  
Cook T. A., 1979, The curves of life
[8]  
Eisenhart L.P., 1909, A treatise on the differential geometry of curves and surfaces
[9]   Notes on superstrings and the infinite sums of Fibonacci and Lucas numbers [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2001, 12 (10) :1937-1940
[10]  
ELNASCHIE MS, 2005, CHAOS SOLITON FRACT, V23, P1901