Generation and Measurement of a Bessel Vortex Beam Carrying Multiple Orbital-Angular-Momentum Modes through a Reflective Metasurface in the rf Domain

被引:24
|
作者
Feng, Qiang [1 ]
Lin, Yifeng [1 ]
Shan, Mingming [1 ]
Mu, Yajie [1 ]
Li, Long [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Key Lab High Speed Circuit Design & EMC, Minist Educ, Xian 710071, Peoples R China
基金
国家重点研发计划;
关键词
LIGHT; DIFFRACTION; DESIGN; WAVES; FIELD;
D O I
10.1103/PhysRevApplied.15.064044
中图分类号
O59 [应用物理学];
学科分类号
摘要
We discuss the generation and measurement of a Bessel vortex beam carrying multiple orbital-angular-momentum (OAM) modes in the radio-frequency domain. Considering that a high-order Bessel beam inherently has high-order OAM modes, in this paper, we propose to superpose these high-order Bessel vortex beams together, which can combine the advantages of the orthogonality of the vortex beam's multiple OAM modes and the Bessel beam's nondiffraction property. A theoretical formula and the basic design method are presented. A reflective metasurface is designed as the beam launcher to generate a deflected Bessel vortex beam that carries two OAM modes of l = 1 and l = 2 simultaneously. The corresponding reflective metasurface is designed, fabricated, and measured. The full-wave electromagnetic simulations and experimental measurements both verify the effectiveness of the design. The proposed method could further promote the application of a Bessel vortex beam in related near-field scenarios such as near-field wireless communication and radar detection and imaging.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Propagation and Dynamic Manipulation of Coherent Orbital-Angular-Momentum Modes Through Underwater Turbid Environments
    Morgan, K. S.
    Miller, J. K.
    Li, W.
    Baghdady, J.
    Johnson, E. G.
    OCEANS 2016 MTS/IEEE MONTEREY, 2016,
  • [22] Generation of superposition modes by polarization-phase coupling in a cylindrical vector orbital angular momentum beam
    Jeong, Tae Moon
    Bulanov, Sergei
    Yan, Wenchao
    Weber, Stefan
    Korn, Georg
    OSA CONTINUUM, 2019, 2 (09) : 2718 - 2727
  • [23] Acoustic-vortex generation through orbital angular momentum transfer
    Amiri, Rahim
    Mahdavi, Mahboubeh
    Mahmoudi, Mohammad
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [24] Polarization-controlled generation of multiple orbital angular momentum modes
    Ren, Zhi-Cheng
    Cheng, Zi-Mo
    Fan, Li
    Sun, Ran
    Zhu, Wen-Zheng
    Wan, Pei
    Dong, Bo-Wen
    Lou, Yan-Chao
    Ding, Jianping
    Wang, Xi-Lin
    Wang, Hui-Tian
    APL PHOTONICS, 2024, 9 (03)
  • [25] Discrimination of Orbital Angular Momentum Modes of the Terahertz Vortex Beam via Diffractive Elements
    Liu, Changming
    Wei, Xuli
    Niu, Liting
    Wang, Kejia
    Yang, Zhengang
    Liu, Jinsong
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [26] Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter
    Tung, J. C.
    Liang, H. C.
    Lu, T. H.
    Huang, K. F.
    Chen, Y. F.
    OPTICS EXPRESS, 2016, 24 (20): : 22796 - 22805
  • [27] Terahertz vortex beam generator carrying orbital angular momentum in both transmission and reflection spaces
    Yang, Li-Jing
    Li, Jiu-Sheng
    OPTICS EXPRESS, 2022, 30 (20) : 36960 - 36972
  • [28] Generation of dual-beam orbital angular momentum vortex beam using transmit arrays
    Xi, Rui
    Ang, S.
    Porter, Kaoru
    Li, Long
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 993 - 994
  • [29] Second-harmonic generation of asymmetric Bessel-Gaussian beams carrying orbital angular momentum
    Dai, Kunjian
    Li, Wenzhe
    Morgan, Kaitlyn S.
    Li, Yuan
    Miller, J. Keith
    Watkins, Richard J.
    Johnson, Eric G.
    OPTICS EXPRESS, 2020, 28 (02) : 2536 - 2546
  • [30] Tunable orbital angular momentum vortex beam generation based on liquid crystal devices
    Pereiro-Garcia, J.
    de la Rosa, P.
    Oton, J. M.
    Quintana, X.
    Geday, M. A.
    Cano-Garcia, M.
    LIQUID CRYSTALS OPTICS AND PHOTONIC DEVICES, 2024, 13016