Generating entangled photons on monolithic chips

被引:0
|
作者
Kang, Dongpeng [1 ,2 ]
Zareian, Nima [3 ]
Helmy, Amr S. [3 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, 92 West Dazhi St, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Sci & Technol Tunable Laser, 92 West Dazhi St, Harbin 150001, Heilongjiang, Peoples R China
[3] Univ Toronto, Ctr Quantum Informat & Quantum Control, Edward S Rogers Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada
来源
ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION XI | 2018年 / 10547卷
基金
中国博士后科学基金; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
entangled photons; monolithic integration; quantum information; quantum photonics; semiconductor waveguides;
D O I
10.1117/12.2293208
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Generating entangled photons on monolithic chips is a significant progress towards real-life applications of optical quantum information processing such as quantum key distribution and quantum computing. Here we present our recent achievements in generating polarization entangled photons on monolithic III-V semiconductor chips without any off-chip component. We demonstrate the direct generation of broadband polarization entangled photons from a semiconductor chip for the first time with a record degree of entanglement. We also show an alternative approach for polarization entangled photon generation on the same epitaxial structure, which enabled a single chip generating both co-polarized and cross-polarized entangled photons. With recent progress on pump laser integration, our results pave the way for fully integrated entangled photon sources in the foreseeable future.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Partitioning optical solitons for generating entangled light beams
    Schmidt, E
    Knöll, L
    Welsch, DG
    OPTICS COMMUNICATIONS, 2001, 194 (4-6) : 393 - 399
  • [22] Generating and detecting electron spin entangled states in nanostructures
    Hu, XD
    Sarma, SD
    NOISE AND INFORMATION IN NANOELECTRONICS, SENSORS, AND STANDARDS II, 2004, 5472 : 107 - 115
  • [23] Quantum phase-sensitive diffraction and imaging using entangled photons
    Asban, Shahaf
    Dorfman, Konstantin E.
    Mukamel, Shaul
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (24) : 11673 - 11678
  • [24] Quantum-dot sources for single photons and entangled photon pairs
    Young, Robert J.
    Ellis, David J. P.
    Stevenson, R. Mark
    Bennett, Anthony J.
    Atkinson, Paola
    Cooper, Ken
    Ritchie, David A.
    Shields, Andrew J.
    PROCEEDINGS OF THE IEEE, 2007, 95 (09) : 1805 - 1814
  • [25] Towards monolithic integration of germanium light sources on silicon chips
    Saito, Shinichi
    Al-Attili, Abdelrahman Zaher
    Oda, Katsuya
    Ishikawa, Yasuhiko
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2016, 31 (04)
  • [26] ENTANGLED PHOTONS GENERATION AND REGENERATION USING A NONLINEAR FIBER RING RESONATOR
    Suchat, S.
    Khunnam, W.
    Yupapin, P. P.
    PHOTONICS AND NANOTECHNOLOGY, PROCEEDINGS OF THE INTERNATIONAL WORKSHOP AND CONFERENCE ON ICPN 2007, 2008, : 52 - +
  • [27] Engineering Entangled Photons for Transmission in Ring-Core Optical Fibers
    Canas, G.
    Gomez, E. S.
    Baradit, E.
    Lima, G.
    Walborn, S. P.
    FRONTIERS IN PHYSICS, 2021, 9
  • [28] Resolution of ghost imaging with entangled photons for different types of momentum correlation
    Zhong, MaLin
    Xu, Ping
    Lu, LiangLiang
    Zhu, ShiNing
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2016, 59 (07)
  • [29] Encoding qubits into the spatial distribution of single photons and entangled photon pairs
    Abouraddy, Ayman F.
    Saleh, Bahaa E. A.
    QUANTUM INFORMATION AND COMPUTATION IX, 2011, 8057
  • [30] Resolution of ghost imaging with entangled photons for different types of momentum correlation
    MaLin Zhong
    Ping Xu
    LiangLiang Lu
    ShiNing Zhu
    Science China(Physics,Mechanics & Astronomy), 2016, (07) : 15 - 19