Towards Quantum-Enhanced Machine Learning for Network Intrusion Detection

被引:17
作者
Gouveia, Arnaldo [1 ,2 ]
Correia, Miguel [2 ]
机构
[1] IBM Belgium, Brussels, Belgium
[2] Univ Lisbon, Inst Super Tecn, INESC Id, Lisbon, Portugal
来源
2020 IEEE 19TH INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (NCA) | 2020年
关键词
TAXONOMY; SYSTEMS;
D O I
10.1109/nca51143.2020.9306691
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network Intrusion Detection Systems (NIDSs) are commonly used today to detect malicious activities. Quantum computers, despite not being practical yet, are becoming available for experimental purposes. We present the first approach for applying unsupervised Quantum Machine Learning (QML) in the context of network intrusion detection from the perspective of quantum information, based on the concept of quantum-assisted ML. We evaluate it using IBM QX in simulation mode and show that the accuracy of a Quantum-Assisted NIDS, based on our approach, can be high, rivaling with the the best conventional SVM results, with a dependence on the characteristics of the dataset.
引用
收藏
页数:8
相关论文
共 35 条
[1]  
Aharonov D, 2003, ARXIVQUANTPH0301040
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]  
Biswas R., 2019, ABS190500444 ARXIV
[4]   Ruta: Implementations of neural autoencoders in R [J].
Charte, David ;
Herrera, Francisco ;
Charte, Francisco .
KNOWLEDGE-BASED SYSTEMS, 2019, 174 :4-8
[5]   A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines [J].
Charte, David ;
Charte, Francisco ;
Garcia, Salvador ;
del Jesus, Maria J. ;
Herrera, Francisco .
INFORMATION FUSION, 2018, 44 :78-96
[6]   GEOMETRICAL AND STATISTICAL PROPERTIES OF SYSTEMS OF LINEAR INEQUALITIES WITH APPLICATIONS IN PATTERN RECOGNITION [J].
COVER, TM .
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (03) :326-&
[7]  
Das K., 2018, ABS181003390 ARXIV
[8]  
Debar H, 2000, ANN TELECOMMUN, V55, P361
[9]  
Demarie T. F., 2018, PHYS REV A, V97
[10]   Effective Intrusion Detection System Using XGBoost [J].
Dhaliwal, Sukhpreet Singh ;
Abdullah-Al Nahid ;
Abbas, Robert .
INFORMATION, 2018, 9 (07)