Coulomb interaction in monolayer transition-metal dichalcogenides

被引:106
|
作者
Dinh Van Tuan [1 ]
Yang, Min [1 ]
Dery, Hanan [1 ,2 ]
机构
[1] Univ Rochester, Dept Elect & Comp Engn, 601 Elmwood Ave, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
STOCHASTIC VARIATIONAL METHOD; FEW-BODY PROBLEMS; CYCLOTRON-RESONANCE; VALLEY POLARIZATION; MOS2; SPIN; EXCITONS; TRION; MODES; MASS;
D O I
10.1103/PhysRevB.98.125308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, the celebrated Rytova-Keldysh potential has been widely used to describe the Coulomb interaction of few-body complexes in monolayer transition-metal dichalcogenides. Using this potential to model charged excitons (trions), one finds a strong dependence of the binding energy on whether the monolayer is suspended in air, supported on SiO2, or encapsulated in hexagonal boron-nitride. However, empirical values of the trion binding energies show weak dependence on the monolayer configuration. This deficiency indicates that the description of the Coulomb potential is still lacking in this important class of materials. We address this problem and derive a new potential form, which takes into account the three atomic sheets that compose a monolayer of transition-metal dichalcogenides. The new potential self-consistently supports (i) the nonhydrogenic Rydberg series of neutral excitons and (ii) the weak dependence of the trion binding energy on the environment. Furthermore, we identify an important trion-lattice coupling due to the phonon cloud in the vicinity of charged complexes. Neutral excitons in their ground state, on the other hand, have weaker coupling to the lattice due to the confluence of their charge neutrality and small Bohr radius.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Trion formation dynamics in monolayer transition metal dichalcogenides
    Singh, Akshay
    Moody, Galan
    Tran, Kha
    Scott, Marie E.
    Overbeck, Vincent
    Berghaeuser, Gunnar
    Schaibley, John
    Seifert, Edward J.
    Pleskot, Dennis
    Gabor, Nathaniel M.
    Yan, Jiaqiang
    Mandrus, David G.
    Richter, Marten
    Malic, Ermin
    Xu, Xiaodong
    Li, Xiaoqin
    PHYSICAL REVIEW B, 2016, 93 (04)
  • [42] Transition-metal dichalcogenides for spintronic applications
    Zibouche, Nourdine
    Kuc, Agnieszka
    Musfeldt, Janice
    Heine, Thomas
    ANNALEN DER PHYSIK, 2014, 526 (9-10) : 395 - 401
  • [43] Colloidal Nanostructures of Transition-Metal Dichalcogenides
    Sun, Yifan
    Terrones, Mauricio
    Schaak, Raymond E.
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (06) : 1517 - 1527
  • [44] Electronic properties of transition-metal dichalcogenides
    Kuc, Agnieszka
    Heine, Thomas
    Kis, Andras
    MRS BULLETIN, 2015, 40 (07) : 577 - 584
  • [45] Radiative lifetime of localized excitons in transition-metal dichalcogenides
    Ayari, Sabrine
    Smiri, Adlen
    Hichri, Aida
    Jaziri, Sihem
    Amand, Thierry
    PHYSICAL REVIEW B, 2018, 98 (20)
  • [46] Photostability of Monolayer Transition-Metal Dichalcogenides in Ambient Air and Acidic/Basic Aqueous Solutions
    Zhang, Wenjin
    Matsuda, Kazunari
    Miyauchi, Yuhei
    ACS OMEGA, 2019, 4 (06): : 10322 - 10327
  • [47] Valley depolarization in monolayer transition-metal dichalcogenides with zone-corner acoustic phonons
    Jeong, Tae-Young
    Bae, Soungmin
    Lee, Seong-Yeon
    Jung, Suyong
    Kim, Yong-Hoon
    Yee, Ki-Ju
    NANOSCALE, 2020, 12 (44) : 22487 - 22494
  • [48] Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides
    Liu, Gui-Bin
    Pang, Hongliang
    Yao, Yugui
    Yao, Wang
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [49] Trion and Biexciton in Monolayer Transition Metal Dichalcogenides
    Kezerashvili, Roman Ya
    Tsiklauri, Shalva M.
    FEW-BODY SYSTEMS, 2017, 58 (01)
  • [50] Topological superconductivity in monolayer transition metal dichalcogenides
    Hsu, Yi-Ting
    Vaezi, Abolhassan
    Fischer, Mark H.
    Kim, Eun-Ah
    NATURE COMMUNICATIONS, 2017, 8