Wireless Passive Temperature Sensors Using Integrated Cylindrical Resonator/Antenna for Harsh-Environment Applications

被引:53
作者
Cheng, Haitao [1 ]
Ren, Xinhua [2 ]
Ebadi, Siamak [3 ]
Chen, Yaohan [4 ]
An, Linan [4 ]
Gong, Xun [1 ]
机构
[1] Univ Cent Florida, Dept Elect Engn & Comp Sci, Antenna RF & Microwave Integrated Syst Lab, Orlando, FL 32816 USA
[2] Motorola Mobil Inc, Libertyville, IL 60048 USA
[3] Intellectual Ventures, Bellevue, WA 98005 USA
[4] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
Cavity resonators; high-temperature techniques; microwave sensors; slot antennas; temperature sensors; SILICOALUMINUM CARBONITRIDE; ELECTRICAL-RESISTIVITY; SLOT ANTENNA; DEGREES-C;
D O I
10.1109/JSEN.2014.2363426
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wireless passive temperature sensors for harsh-environment applications based on cylindrical microwave cavity resonators are presented herein. Slot antennas are integrated with sensors with zero additional volume. The resonant frequencies of the sensors are determined by the dielectric constants of the ceramic materials, which monotonically increase versus temperature. Silicoboron carbonitride (SiBCN) ceramic materials, which are very robust inside harsh environments featuring high temperatures and corrosive gases, are optimized in this paper to reduce dielectric losses and increase sensing ranges and accuracies. A robust interrogation antenna is developed to wirelessly measure the sensors up to 1300 degrees C. Two sensors based on Si6B1 and Si4B1 ceramics are measured up to 1050 degrees C and 1300 degrees C, respectively, with a sensitivity of similar to 0.78 MHz/degrees C at 1050 degrees C. This type of wireless, passive, and robust sensor can be used for many harsh-environment applications, such as gas turbines.
引用
收藏
页码:1453 / 1462
页数:10
相关论文
共 29 条
[1]   Silicoaluminum carbonitride with anomalously high resistance to oxidation and hot corrosion [J].
An, LN ;
Wang, YG ;
Bharadwaj, L ;
Zhang, LG ;
Fan, Y ;
Jiang, DP ;
Sohn, YH ;
Desai, VH ;
Kapat, J ;
Chow, LC .
ADVANCED ENGINEERING MATERIALS, 2004, 6 (05) :337-340
[2]  
[Anonymous], P 40 AIAA ASME SAE A
[3]  
Boyce MeherwanP., 2006, GAS TURBINE ENG HDB, V3rd
[4]  
Canabal A., 2010, 2010 International Ultrasonics Symposium, P265, DOI 10.1109/ULTSYM.2010.0065
[5]   High-temperature battery-free wireless microwave acoustic resonator sensor system [J].
Canabal, A. ;
Davulis, P. M. ;
Harris, G. M. ;
da Cunha, M. Pereira .
ELECTRONICS LETTERS, 2010, 46 (07) :471-472
[6]  
Cheng HT, 2013, IEEE ANTENNAS PROP, P242, DOI 10.1109/APS.2013.6710782
[7]   A Low-Profile Wireless Passive Temperature Sensor Using Resonator/Antenna Integration Up to 1000°C [J].
Cheng, Haitao ;
Ebadi, Siamak ;
Gong, Xun .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2012, 11 :369-372
[8]  
Cheng HT, 2011, IEEE ANTENNAS PROP, P1350, DOI 10.1109/APS.2011.5996540
[9]   Vertically Integrated Three-Pole Filter/Antennas for Array Applications [J].
Cheng, Haitao ;
Yusuf, Yazid ;
Gong, Xun .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2011, 10 :278-281
[10]  
Fachberger R, 2004, ULTRASON, P1223