Effect of in vitro enzymatic degradation on 3D printed poly(ε-caprolactone) scaffolds: morphological, chemical and mechanical properties

被引:36
|
作者
Ferreira, Joana [1 ]
Gloria, Antonio [2 ]
Cometa, Stefania [3 ]
Coelho, Jorge F. J. [4 ]
Domingos, Marco [5 ]
机构
[1] Polytech Inst Leiria, Ctr Rapid & Sustainable Prod Dev, Leiria, Portugal
[2] Natl Res Council Italy, Inst Polymers Composites & Biomat, Naples, Italy
[3] Jaber Innovat Srl, Rome, Italy
[4] Univ Coimbra, CEMUC Chem Engn Dept, Coimbra, Portugal
[5] Univ Manchester, Sch Mech Aerosp & Civil Engn, Sackville St, Manchester M13 9PL, Lancs, England
关键词
Biomanufacturing; Enzymatic degradation; Polycaprolactone; Scaffolds; Tissue engineering; ALIPHATIC POLYESTERS; BIOMATERIALS; PARAMETERS; POROSITY; DESIGN; LIPASE; VIVO;
D O I
10.5301/jabfm.5000363
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Background: In recent years, the tissue engineering (TE) field has significantly benefited from advanced techniques such as additive manufacturing (AM), for the design of customized 3D scaffolds with the aim of guided tissue repair. Among the wide range of materials available to biomanufacture 3D scaffolds, poly(e-caprolactone) (PCL) clearly arises as the synthetic polymer with the greatest potential, due to its unique properties - namely, biocompatibility, biodegradability, thermal and chemical stability and processability. This study aimed for the first time to investigate the effect of pore geometry on the in vitro enzymatic chain cleavage mechanism of PCL scaffolds manufactured by the AM extrusion process. Methods: Methods: Morphological properties of 3D printed PCL scaffolds before and after degradation were evaluated using Scanning Electron Microscopy (SEM) and micro-computed tomography (mu-CT). Differential Scanning Calorimetry (DSC) was employed to determine possible variations in the crystallinity of the scaffolds during the degradation period. The molecular weight was assessed using Size Exclusion Chromatography (SEC) while the mechanical properties were investigated under static compression conditions. Results: Morphological results suggested a uniform reduction of filament diameter, while increasing the scaffolds' porosity. DSC analysis revealed and increment in the crystallinity degree while the molecular weight, evaluated through SEC, remained almost constant during the incubation period (25 days). Mechanical analysis highlighted a decrease in the compressive modulus and maximum stress over time, probably related to the significant weight loss of the scaffolds. Conclusions: All of these results suggest that PCL scaffolds undergo enzymatic degradation through a surface erosion mechanism, which leads to significant variations in mechanical, physical and chemical properties, but which has little influence on pore geometry.
引用
收藏
页码:E185 / E195
页数:11
相关论文
共 50 条
  • [41] The effect of zinc oxide doping on mechanical and biological properties of 3D printed calcium sulfate based scaffolds
    Dikici, Betul Aldemir
    Dikici, Serkan
    Karaman, Ozan
    Oflaz, Hakan
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2017, 37 (04) : 733 - 741
  • [42] The Effect of the Mechanical Properties of the 3D Printed Gelatin/Hyaluronic Acid Scaffolds on hMSCs Differentiation Towards Chondrogenesis
    Kyoung Choi
    Cho Young Park
    Jun Shik Choi
    Young-Jin Kim
    Seok Chung
    Sanghoon Lee
    Chun-Ho Kim
    Sang Jun Park
    Tissue Engineering and Regenerative Medicine, 2023, 20 : 593 - 605
  • [43] 3D microtomographic characterization of precision extruded poly-ε-caprolactone scaffolds
    Darling, AL
    Sun, W
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2004, 70B (02) : 311 - 317
  • [44] Effect of molecular weight on mechanical properties and microstructure of 3D printed poly(ether ether ketone)
    Xu, Qinfei
    Shang, Yingshuang
    Jiang, Zilong
    Wang, Zhaoyang
    Zhou, Chenyi
    Liu, Xin
    Yan, Qixing
    Li, Xuefeng
    Zhang, Haibo
    POLYMER INTERNATIONAL, 2021, 70 (08) : 1065 - 1072
  • [45] Effects of MgO nanoparticle addition on the mechanical properties, degradation properties, antibacterial properties and in vitro and in vivo biological properties of 3D-printed Zn scaffolds
    Yu, Leiting
    Sun, Fengdong
    Wang, Yuanyuan
    Li, Wei
    Zheng, Yufeng
    Shen, Guangxin
    Wang, Yao
    Chen, Minfang
    BIOACTIVE MATERIALS, 2024, 37 : 72 - 85
  • [46] A study on degradation behavior of 3D printed gellan gum scaffolds
    Yu, Ilhan
    Kaonis, Samantha
    Chen, Roland
    3RD CIRP CONFERENCE ON BIOMANUFACTURING, 2017, 65 : 78 - 83
  • [47] Design and mechanical characterization of solid and highly porous 3D printed poly(propylene fumarate) scaffolds
    Walker J.M.
    Bodamer E.
    Kleinfehn A.
    Luo Y.
    Becker M.
    Dean D.
    Progress in Additive Manufacturing, 2017, 2 (1-2) : 99 - 108
  • [48] MECHANICAL PROPERTIES OF 3D PRINTED METALS
    Allameh, Seyed M.
    Harbin, Brianna
    Leininger, Bailey
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 10, 2019,
  • [49] Mechanical properties of 3D printed polymers
    Yahamed, Azem
    Ikonomov, Pavel
    Fleming, Paul D.
    Pekarovicova, Alexandra
    Gustafson, Peter
    Alden, Arz Qwam
    Alrafeek, Saif
    JOURNAL OF PRINT AND MEDIA TECHNOLOGY RESEARCH, 2016, 5 (04): : 273 - 289
  • [50] Alginate grafted with poly(e-caprolactone): effect of enzymatic degradation on physicochemical properties
    Benykhlef, Samir
    Dulong, Virginie
    Bengharez, Zohra
    Picton, Luc
    Guemra, Kaddour
    Le Cerf, Didier
    POLYMER INTERNATIONAL, 2012, 61 (09) : 1456 - 1461