Effect of in vitro enzymatic degradation on 3D printed poly(ε-caprolactone) scaffolds: morphological, chemical and mechanical properties

被引:37
|
作者
Ferreira, Joana [1 ]
Gloria, Antonio [2 ]
Cometa, Stefania [3 ]
Coelho, Jorge F. J. [4 ]
Domingos, Marco [5 ]
机构
[1] Polytech Inst Leiria, Ctr Rapid & Sustainable Prod Dev, Leiria, Portugal
[2] Natl Res Council Italy, Inst Polymers Composites & Biomat, Naples, Italy
[3] Jaber Innovat Srl, Rome, Italy
[4] Univ Coimbra, CEMUC Chem Engn Dept, Coimbra, Portugal
[5] Univ Manchester, Sch Mech Aerosp & Civil Engn, Sackville St, Manchester M13 9PL, Lancs, England
来源
JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS | 2017年 / 15卷 / 03期
关键词
Biomanufacturing; Enzymatic degradation; Polycaprolactone; Scaffolds; Tissue engineering; ALIPHATIC POLYESTERS; BIOMATERIALS; PARAMETERS; POROSITY; DESIGN; LIPASE; VIVO;
D O I
10.5301/jabfm.5000363
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Background: In recent years, the tissue engineering (TE) field has significantly benefited from advanced techniques such as additive manufacturing (AM), for the design of customized 3D scaffolds with the aim of guided tissue repair. Among the wide range of materials available to biomanufacture 3D scaffolds, poly(e-caprolactone) (PCL) clearly arises as the synthetic polymer with the greatest potential, due to its unique properties - namely, biocompatibility, biodegradability, thermal and chemical stability and processability. This study aimed for the first time to investigate the effect of pore geometry on the in vitro enzymatic chain cleavage mechanism of PCL scaffolds manufactured by the AM extrusion process. Methods: Methods: Morphological properties of 3D printed PCL scaffolds before and after degradation were evaluated using Scanning Electron Microscopy (SEM) and micro-computed tomography (mu-CT). Differential Scanning Calorimetry (DSC) was employed to determine possible variations in the crystallinity of the scaffolds during the degradation period. The molecular weight was assessed using Size Exclusion Chromatography (SEC) while the mechanical properties were investigated under static compression conditions. Results: Morphological results suggested a uniform reduction of filament diameter, while increasing the scaffolds' porosity. DSC analysis revealed and increment in the crystallinity degree while the molecular weight, evaluated through SEC, remained almost constant during the incubation period (25 days). Mechanical analysis highlighted a decrease in the compressive modulus and maximum stress over time, probably related to the significant weight loss of the scaffolds. Conclusions: All of these results suggest that PCL scaffolds undergo enzymatic degradation through a surface erosion mechanism, which leads to significant variations in mechanical, physical and chemical properties, but which has little influence on pore geometry.
引用
收藏
页码:E185 / E195
页数:11
相关论文
共 50 条
  • [11] The Effect of Molecular Weight on the Physical Properties and In Vitro Enzymatic Degradation Behavior of Poly(ε- caprolactone)
    Li, Xu
    Cui, Jun
    Liu, Yixiu
    Ye, Fang
    Jin, Jiafeng
    Xie, Xin
    Li, Ang
    Jia, Lesheng
    Zhao, Yu
    Yang, Liqun
    SCIENCE OF ADVANCED MATERIALS, 2019, 11 (10) : 1369 - 1375
  • [12] 3D printed poly(lactic acid)/poly(ε-caprolactone)/graphene ε-caprolactone)/graphene nanocomposite scaffolds for peripheral nerve tissue engineering
    Gerdefaramarzi, Reyhane Soltani
    Ebrahimian-Hosseinabadi, Mehdi
    Khodaei, Mohammad
    ARABIAN JOURNAL OF CHEMISTRY, 2024, 17 (09)
  • [13] Crystallization, Mechanical Properties, and Enzymatic Degradation of Biodegradable Poly(ε-caprolactone) Composites with Poly(lactic acid) Fibers
    Ju, Dandan
    Han, Lijing
    Li, Fan
    Chen, Shan
    Dong, Lisong
    POLYMER COMPOSITES, 2013, 34 (10) : 1745 - 1752
  • [14] Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties
    Ansari, Mohammad Aftab Alam
    Jain, Prashant Kumar
    Nanda, Himansu Sekhar
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2023, 34 (10) : 1408 - 1429
  • [15] Effect of nanofiller's type on the thermal properties and enzymatic degradation of poly(ε-caprolactone)
    Nerantzaki, Maria
    Papageorgiou, George Z.
    Bikiaris, Dimitrios N.
    POLYMER DEGRADATION AND STABILITY, 2014, 108 : 257 - 268
  • [16] 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating
    Ghosh, Sagnik
    Yadav, Anilkumar
    Rani, Sweety
    Takkar, Sonam
    Kulshreshtha, Ritu
    Nandan, Bhanu
    Srivastava, Rajiv K.
    LANGMUIR, 2023, 39 (05) : 1927 - 1946
  • [17] Influence of Build Orientation, Geometry and Artificial Saliva Aging on the Mechanical Properties of 3D Printed Poly(ε-caprolactone)
    Pinho, Ana C.
    Piedade, Ana P.
    MATERIALS, 2021, 14 (12)
  • [18] Comparison of CAD and Voxel-Based Modelling Methodologies for the Mechanical Simulation of Extrusion-Based 3D Printed Scaffolds
    Vega, Gisela
    Paz, Ruben
    Gleadall, Andrew
    Monzon, Mario
    Aleman-Dominguez, Maria Elena
    MATERIALS, 2021, 14 (19)
  • [19] Effect of composition and macropore percentage on mechanical and in vitro cell proliferation and differentiation properties of 3D printed HA/β-TCP scaffolds
    Zhao, Ningbo
    Wang, Yanen
    Qin, Lei
    Guo, Zhengze
    Li, Dehua
    RSC ADVANCES, 2017, 7 (68): : 43186 - 43196
  • [20] Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications
    Tardajos, Myriam G.
    Cama, Giuseppe
    Dash, Mamoni
    Misseeuw, Lara
    Gheysens, Tom
    Gorzelanny, Christian
    Coenye, Tom
    Dubruel, Peter
    CARBOHYDRATE POLYMERS, 2018, 191 : 127 - 135