Effect of in vitro enzymatic degradation on 3D printed poly(ε-caprolactone) scaffolds: morphological, chemical and mechanical properties

被引:37
作者
Ferreira, Joana [1 ]
Gloria, Antonio [2 ]
Cometa, Stefania [3 ]
Coelho, Jorge F. J. [4 ]
Domingos, Marco [5 ]
机构
[1] Polytech Inst Leiria, Ctr Rapid & Sustainable Prod Dev, Leiria, Portugal
[2] Natl Res Council Italy, Inst Polymers Composites & Biomat, Naples, Italy
[3] Jaber Innovat Srl, Rome, Italy
[4] Univ Coimbra, CEMUC Chem Engn Dept, Coimbra, Portugal
[5] Univ Manchester, Sch Mech Aerosp & Civil Engn, Sackville St, Manchester M13 9PL, Lancs, England
来源
JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS | 2017年 / 15卷 / 03期
关键词
Biomanufacturing; Enzymatic degradation; Polycaprolactone; Scaffolds; Tissue engineering; ALIPHATIC POLYESTERS; BIOMATERIALS; PARAMETERS; POROSITY; DESIGN; LIPASE; VIVO;
D O I
10.5301/jabfm.5000363
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Background: In recent years, the tissue engineering (TE) field has significantly benefited from advanced techniques such as additive manufacturing (AM), for the design of customized 3D scaffolds with the aim of guided tissue repair. Among the wide range of materials available to biomanufacture 3D scaffolds, poly(e-caprolactone) (PCL) clearly arises as the synthetic polymer with the greatest potential, due to its unique properties - namely, biocompatibility, biodegradability, thermal and chemical stability and processability. This study aimed for the first time to investigate the effect of pore geometry on the in vitro enzymatic chain cleavage mechanism of PCL scaffolds manufactured by the AM extrusion process. Methods: Methods: Morphological properties of 3D printed PCL scaffolds before and after degradation were evaluated using Scanning Electron Microscopy (SEM) and micro-computed tomography (mu-CT). Differential Scanning Calorimetry (DSC) was employed to determine possible variations in the crystallinity of the scaffolds during the degradation period. The molecular weight was assessed using Size Exclusion Chromatography (SEC) while the mechanical properties were investigated under static compression conditions. Results: Morphological results suggested a uniform reduction of filament diameter, while increasing the scaffolds' porosity. DSC analysis revealed and increment in the crystallinity degree while the molecular weight, evaluated through SEC, remained almost constant during the incubation period (25 days). Mechanical analysis highlighted a decrease in the compressive modulus and maximum stress over time, probably related to the significant weight loss of the scaffolds. Conclusions: All of these results suggest that PCL scaffolds undergo enzymatic degradation through a surface erosion mechanism, which leads to significant variations in mechanical, physical and chemical properties, but which has little influence on pore geometry.
引用
收藏
页码:E185 / E195
页数:11
相关论文
共 40 条
[1]   Selective degradation in aliphatic block copolyesters by controlling the heterogeneity of the amorphous phase [J].
Arias, Veluska ;
Olsen, Peter ;
Odelius, Karin ;
Hoglund, Anders ;
Albertsson, Ann-Christine .
POLYMER CHEMISTRY, 2015, 6 (17) :3271-3282
[2]   The effects of porosity on in vitro degradation of polylactic acid polyglycolic acid implants used in repair of articular cartilage [J].
Athanasiou, KA ;
Schmitz, JP ;
Agrawal, CM .
TISSUE ENGINEERING, 1998, 4 (01) :53-63
[3]   BioCell Printing: Integrated automated assembly system for tissue engineering constructs [J].
Bartolo, P. ;
Domingos, M. ;
Gloria, A. ;
Ciurana, J. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2011, 60 (01) :271-274
[4]   In vitro and in vivo degradation of non-woven materials made of poly(ε-caprolactone) nanofibers prepared by electrospinning under different conditions [J].
Bölgen, N ;
Menceloglu, YZ ;
Acatay, K ;
Vargel, I ;
Piskin, E .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2005, 16 (12) :1537-1555
[5]   Physicochemical characterisation of degrading polycaprolactone scaffolds [J].
Bosworth, Lucy A. ;
Downes, Sandra .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (12) :2269-2276
[6]  
Brown J, 2016, BIOINSTRUCTIVE SCAFF
[7]   Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways [J].
Brugmans, M. C. P. ;
Sontjens, S. H. M. ;
Cox, M. A. J. ;
Nandakumar, A. ;
Bosman, A. W. ;
Mes, T. ;
Janssen, H. M. ;
Bouten, C. V. C. ;
Baaijens, F. P. T. ;
Driessen-Mol, A. .
ACTA BIOMATERIALIA, 2015, 27 :21-31
[8]   A comparison of 3D poly(ε-caprolactone) tissue engineering scaffolds produced with conventional and additive manufacturing techniques by means of quantitative analysis of SR μ-CT images [J].
Brun, F. ;
Intranuovo, F. ;
Mohammadi, S. ;
Domingos, M. ;
Favia, P. ;
Tromba, G. .
JOURNAL OF INSTRUMENTATION, 2013, 8
[9]   Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network [J].
Castilla-Cortazar, I. ;
Mas-Estelles, J. ;
Meseguer-Duenas, J. M. ;
Ivirico, J. L. Escobar ;
Mari, B. ;
Vidaurre, A. .
POLYMER DEGRADATION AND STABILITY, 2012, 97 (08) :1241-1248
[10]  
Chen GP, 2002, MACROMOL BIOSCI, V2, P67, DOI 10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO