Graph theory-based finite-time synchronization of fractional-order complex dynamical networks

被引:91
作者
Li, Hong-Li [1 ,2 ]
Cao, Jinde [1 ,4 ,5 ]
Jiang, Haijun [2 ]
Alsaedi, Ahmed [3 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[4] Nantong Univ, Sch Elect Engn, Nantong 226019, Peoples R China
[5] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2018年 / 355卷 / 13期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
GENERALIZED NEURAL-NETWORKS; STOCHASTIC DELAYED SYSTEMS; EXPONENTIAL STABILITY; MULTIAGENT SYSTEMS; VARYING DELAYS; DISSIPATIVITY; SIGNALS;
D O I
10.1016/j.jfranklin.2018.05.039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the finite-time synchronization problem for a class of fractional-order complex dynamical networks (FOCDNs). By utilizing the properties of fractional calculus and fractional-order comparison principle, we propose a new lemma. Base on the new lemma, some analysis techniques and algebraic graph theory method, some novel criteria are given to ensure finite-time synchronization of FOCDNs, and the upper bound of the setting time for synchronization is estimated. At last, numerical simulations are given to verify the effectiveness of the obtained results. (C) 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5771 / 5789
页数:19
相关论文
共 40 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]  
[Anonymous], 2006, THEORY APPL FRACTION
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]   Stabilization of fractional-order coupled systems with time delay on networks [J].
Chen, Liping ;
Wu, Ranchao ;
Chu, Zhaobi ;
He, Yigang .
NONLINEAR DYNAMICS, 2017, 88 (01) :521-528
[6]   Finite-time complex function synchronization of multiple complex-variable chaotic systems with network transmission and combination mode [J].
Chen, Xiangyong ;
Cao, Jinde ;
Park, Ju H. ;
Zong, Guangdeng ;
Qiu, Jianlong .
JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (22) :5461-5471
[7]   Finite-time multi-switching synchronization behavior for multiple chaotic systems with network transmission mode [J].
Chen, Xiangyong ;
Cao, Jinde ;
Park, Ju H. ;
Huang, Tingwen ;
Qiu, Jianlong .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (05) :2892-2911
[8]  
Cheng LY, 2018, NONLINEAR DYNAM, V92, P1091, DOI 10.1007/s11071-018-4110-8
[9]   Complete synchronization and stability of star-shaped complex networks [J].
Gu, YQ ;
Shao, C ;
Fu, XC .
CHAOS SOLITONS & FRACTALS, 2006, 28 (02) :480-488
[10]   Lag synchronization of complex networks via pinning control [J].
Guo, Wanli .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) :2579-2585