From benzene to naphthalene: direct measurement of reactions and intermediates of phenyl radicals and acetylene

被引:27
作者
Chu, Te-Chun [1 ]
Buras, Zachary J. [1 ]
Smith, Mica C. [1 ]
Uwagwu, Awele B. [1 ]
Green, William H. [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
POLYCYCLIC AROMATIC-HYDROCARBONS; MASTER EQUATION; CROSS-SECTIONS; SOOT; MECHANISM; KINETICS; COEFFICIENTS; TEMPERATURE; COMBUSTION; GROWTH;
D O I
10.1039/c9cp04554f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen-abstraction-C2H2-addition (HACA) is one of the most important pathways leading to the formation of naphthalene, the simplest two-ring polycyclic aromatic hydrocarbon (PAH). The major reaction channels for naphthalene formation have previously been calculated by Mebel et al., but few experiments exist to validate the theoretical predictions. In this work, time-resolved molecular beam mass spectrometry (MBMS) was used to investigate the time-dependent product formation in the reaction of a phenyl radical with C2H2 for the first time, at temperatures of 600 and 700 K and pressures of 10 and 50 Torr. A pressure-dependent model was developed with rate parameters derived from Mebel et al.'s calculations and from newly calculated pathways on the C8H7 PES at the G3(MP2,CC)//B3LYP/6-311G** level of theory. The model prediction is consistent with the MBMS product profiles at a mass-to-charge ratio (m/z) of 102 (corresponding to the H-loss product from C8H7, phenylacetylene), 103 (the initial C8H7 adduct and its isomers plus the C-13 isotopologue of phenylacetylene), 128 (naphthalene), and 129 (C10H9 isomers plus the C-13 isotopologue of naphthalene). An additional C8H7 isomer, bicyclo[4.2.0]octa-1,3,5-trien-7-yl, not considered by Mebel et al.'s calculations, contributes significantly to the signal at m/z 103 due to its stable energy and low reactivity. At high C2H2 concentrations, bimolecular reactions dominated the observed chemistry, and the m/z 128 and m/z 102 MBMS signal ratio was measured to directly determine the product branching ratio. At 600 K and 10 Torr, branching to the H-loss product (phenylacetylene) on the C8H7 PES accounted for 7.9% of phenyl radical consumption, increasing to 15.9% at 700 K and 10 Torr. At 50 Torr, the branching was measured to be 2.8% at 600 K and 6.2% at 700 K. Adduct stabilization is favored at higher pressure and lower temperature, which hinders the formation of the H-loss product. The pressure-dependent model predicted the observed branching ratios within the experimental uncertainty, indicating that the rate parameters reported here can be used in combustion mechanisms to provide insights into phenyl HACA reactions and PAH formation.
引用
收藏
页码:22248 / 22258
页数:11
相关论文
共 59 条
  • [1] Determination of single photon ionization cross sections for quantitative analysis of complex organic mixtures
    Adam, Thomas
    Zimmermann, Ralf
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 389 (06) : 1941 - 1951
  • [2] Automatic estimation of pressure-dependent rate coefficients
    Allen, Joshua W.
    Goldsmith, C. Franklin
    Green, William H.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (03) : 1131 - 1155
  • [3] OPEN-SHELL MOLLER-PLESSET PERTURBATION-THEORY
    AMOS, RD
    ANDREWS, JS
    HANDY, NC
    KNOWLES, PJ
    [J]. CHEMICAL PHYSICS LETTERS, 1991, 185 (3-4) : 256 - 264
  • [4] [Anonymous], 2016, GAUSSIAN 16
  • [5] [Anonymous], 1989, Symp. Int. Combust.
  • [6] [Anonymous], 2016, CHEM WORKB 4 1 18493
  • [7] Bittner J.D., 1981, P COMBUST INST, V18, P1105, DOI DOI 10.1016/S0082-0784(81)80115-4
  • [8] Phenyl radical plus propene: a prototypical reaction surface for aromatic-catalyzed 1,2-hydrogen-migration and subsequent resonance-stabilized radical formation
    Buras, Zachary J.
    Chu, Te-Chun
    Jamal, Adeel
    Yee, Nathan W.
    Middaugh, Joshua E.
    Green, William H.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (19) : 13191 - 13214
  • [9] Soot formation with C1 and C2 fuels using an improved chemical mechanism for PAH growth
    Chernov, Victor
    Thomson, Murray J.
    Dworkin, Seth B.
    Slavinskaya, Nadezhda A.
    Riedel, Uwe
    [J]. COMBUSTION AND FLAME, 2014, 161 (02) : 592 - 601
  • [10] Modeling of aromatics formation in fuel-rich methane oxy-combustion with an automatically generated pressure-dependent mechanism
    Chu, Te-Chun
    Buras, Zachary J.
    Osswald, Patrick
    Liu, Mengjie
    Goldman, Mark Jacob
    Green, William H.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (02) : 813 - 832