A primal-dual active set algorithm for bilaterally control constrained optimal control problems

被引:13
作者
Hintermüller, M [1 ]
机构
[1] Karl Franzens Univ Graz, Dept Math, A-8010 Graz, Austria
关键词
active set; augmented Lagrangian; generalized Moreau-Yosida approximation; optimal control; primal-dual method;
D O I
10.1090/qam/1955227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized Moreau-Yosida based primal-dual active set algorithm for the solution of a representative class of bilaterally control constrained optimal control problems with boundary control is developed. The use of the generalized Moreau-Yosida approximation allows an efficient identification of the active and inactive sets at each iteration level. The method requires no step-size strategy and exhibits a finite termination property for the discretized problem class. In infinite as well as in finite dimensions a convergence analysis based on an augmented Lagrangian merit function is given. In a series of numerical tests the efficiency of the new algorithm is emphasized.
引用
收藏
页码:131 / 160
页数:30
相关论文
共 28 条
[1]  
[Anonymous], 1992, ADV OPTIMIZATION PAR
[2]   Primal-dual strategy for constrained optimal control problems [J].
Bergounioux, M ;
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) :1176-1194
[3]   Augmented Lagrangian techniques for elliptic state constrained optimal control problems [J].
Bergounioux, M ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (05) :1524-1543
[4]   A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems [J].
Bergounioux, M ;
Haddou, M ;
Hintermüller, M ;
Kunisch, K .
SIAM JOURNAL ON OPTIMIZATION, 2000, 11 (02) :495-521
[6]  
Dautray R., 1988, MATH ANAL NUMERICAL, V2
[7]  
DENNIS JE, TRICE TRUST REGION I
[8]   On L(2) sufficient conditions and the gradient projection method for optimal control problems [J].
Dunn, JC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (04) :1270-1290
[9]  
Gill P. E., 1999, PRACTICAL OPTIMIZATI
[10]   A NUMERICALLY STABLE DUAL METHOD FOR SOLVING STRICTLY CONVEX QUADRATIC PROGRAMS [J].
GOLDFARB, D ;
IDNANI, A .
MATHEMATICAL PROGRAMMING, 1983, 27 (01) :1-33