ON EQUIVALENCE OF SUPER LOG SOBOLEV AND NASH TYPE INEQUALITIES

被引:0
|
作者
Biroli, Marco [1 ]
Maheux, Patrick [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Univ Orleans, Federat Denis Poisson, MAPMO, Dept Math,UMR CNRS 7349, F-45067 Orleans 2, France
关键词
ultracontractivity; super log Sobolev inequality; Nash type inequality; Orlicz-Sobolev inequality; semigroups of operators; Dirichlet form; heat kernel; infinite-dimensional torus; HEAT KERNELS; UPPER-BOUNDS; ULTRACONTRACTIVITY; OPERATORS;
D O I
10.4064/cm137-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the equivalence of Nash type and super log Sobolev inequalities for Dirichlet forms. We also show that both inequalities are equivalent to Orlicz Sobolev type inequalities. No ultracontractivity of the semigroup is assumed. It is known that there is no equivalence between super log Sobolev or Nash type inequalities and ultracontractivity. We discuss Davies Simon's counterexample as the borderline case of this equivalence and related open problems.
引用
收藏
页码:189 / 208
页数:20
相关论文
共 50 条
  • [31] On Trudinger-Moser type inequalities involving Sobolev-Lorentz spaces
    Ruf, Bernhard
    Tarsi, Cristina
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (03) : 369 - 397
  • [32] Functional inequalities and subordination: stability of Nash and Poincaré inequalities
    René L. Schilling
    Jian Wang
    Mathematische Zeitschrift, 2012, 272 : 921 - 936
  • [33] Logarithmic Sobolev Inequalities on Homogeneous Spaces
    Gordina, Maria
    Luo, Liangbing
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (20) : 13432 - 13460
  • [34] Besov class via heat semigroup on Dirichlet spaces I: Sobolev type inequalities
    Ruiz, Patricia Alonso
    Baudoin, Fabrice
    Chen, Li
    Rogers, Luke G.
    Shanmugalingam, Nageswari
    Teplyaev, Alexander
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (11)
  • [35] Nash-type inequalities and heat kernels for non-local Dirichlet forms
    Hu, Jiaxin
    Kumagai, Takashi
    KYUSHU JOURNAL OF MATHEMATICS, 2006, 60 (02) : 245 - 265
  • [36] Sobolev–Orlicz inequalities, ultracontractivity and spectra of time changed Dirichlet forms
    Ali Ben Amor
    Mathematische Zeitschrift, 2007, 255 : 627 - 647
  • [37] Sobolev trace-type inequalities via time-space fractional heat equations
    Tang, Yongrui
    Li, Pengtao
    Hu, Rui
    Zhai, Zhichun
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024,
  • [38] Hardy-Sobolev Type Inequalities with Sharp Constants in Carnot-Carath,odory Spaces
    Danielli, Donatella
    Garofalo, Nicola
    Phuc, Nguyen Cong
    POTENTIAL ANALYSIS, 2011, 34 (03) : 223 - 242
  • [39] Reverse conformally invariant Sobolev inequalities on the sphere
    Frank, Rupert L.
    Konig, Tobias
    Tang, Hanli
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (04)
  • [40] Nash type inequalities for fractional powers of non-negative self-adjoint operators
    Bendikov, Alexander
    Maheux, Patrick
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (07) : 3085 - 3097