ON EQUIVALENCE OF SUPER LOG SOBOLEV AND NASH TYPE INEQUALITIES

被引:0
|
作者
Biroli, Marco [1 ]
Maheux, Patrick [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Univ Orleans, Federat Denis Poisson, MAPMO, Dept Math,UMR CNRS 7349, F-45067 Orleans 2, France
关键词
ultracontractivity; super log Sobolev inequality; Nash type inequality; Orlicz-Sobolev inequality; semigroups of operators; Dirichlet form; heat kernel; infinite-dimensional torus; HEAT KERNELS; UPPER-BOUNDS; ULTRACONTRACTIVITY; OPERATORS;
D O I
10.4064/cm137-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the equivalence of Nash type and super log Sobolev inequalities for Dirichlet forms. We also show that both inequalities are equivalent to Orlicz Sobolev type inequalities. No ultracontractivity of the semigroup is assumed. It is known that there is no equivalence between super log Sobolev or Nash type inequalities and ultracontractivity. We discuss Davies Simon's counterexample as the borderline case of this equivalence and related open problems.
引用
收藏
页码:189 / 208
页数:20
相关论文
共 50 条
  • [1] Optimal Normed Sobolev Type Inequalities on Manifolds I: The Nash Prototype
    Ceccon, Jurandir
    Duran, Carlos
    Montenegro, Marcos
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 913 - 952
  • [2] LOG-SOBOLEV INEQUALITIES: DIFFERENT ROLES OF RIC AND HESS
    Wang, Feng-Yu
    ANNALS OF PROBABILITY, 2009, 37 (04) : 1587 - 1604
  • [3] Log-Sobolev inequalities for semi-direct product operators and applications
    Piero d’Ancona
    Patrick Maheux
    Vittoria Pierfelice
    Mathematische Zeitschrift, 2016, 283 : 103 - 131
  • [4] Log-Sobolev inequalities for semi-direct product operators and applications
    d'Ancona, Piero
    Maheux, Patrick
    Pierfelice, Vittoria
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 103 - 131
  • [5] Poincare and Log-Sobolev Inequalities for Mixtures
    Schlichting, Andre
    ENTROPY, 2019, 21 (01):
  • [6] Super-Poincar, and Nash-type inequalities for subordinated semigroups
    Gentil, Ivan
    Maheux, Patrick
    SEMIGROUP FORUM, 2015, 90 (03) : 660 - 693
  • [7] Super-Poincaré and Nash-type inequalities for subordinated semigroups
    Ivan Gentil
    Patrick Maheux
    Semigroup Forum, 2015, 90 : 660 - 693
  • [8] Relative Nash-Type and L2-Sobolev Inequalities in Dunkl Setting
    Mustapha, Sami
    Sifi, Mohamed
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (08)
  • [9] On the equivalence of heat kernel estimates and logarithmic Sobolev inequalities for the Hodge Laplacian
    Charalambous, Nelia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) : 291 - 312
  • [10] Weighted Nash inequalities
    Bakry, Dominique
    Bolley, Francois
    Gentil, Ivan
    Maheux, Patrick
    REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (03) : 879 - 906