The holomorphic solutions of the generalized Dhombres functional equation

被引:5
|
作者
Reich, L.
Smital, J. [1 ]
Stefankova, M.
机构
[1] Silesian Univ, Math Inst, CZ-74601 Opava, Czech Republic
[2] Karl Franzens Univ Graz, Inst Math, A-8010 Graz, Austria
关键词
entire function; locally analytic function; iterative functional equation; typical solution;
D O I
10.1016/j.jmaa.2006.12.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study holomorphic solutions f of the generalized Dhombres equation f (zf (z)) = 0(f (Z)), Z E C, where phi is in the class epsilon of entire functions. We show, that there is a nowhere dense set epsilon(0) subset of epsilon such that for every phi is an element of epsilon \ epsilon(0), any solution f vanishes at 0 and hence, satisfies the conditions for local analytic solutions with fixed point 0 from our recent paper. Consequently, we are able to provide a characterization of solutions in the typical case where phi is an element of epsilon \ epsilon(0). We also show that for polynomial phi any holomorphic solution on C \ {0} can be extended to the whole of C. Using this, in special cases like phi(z) = z(k+1), k is an element of N, we can provide a characterization of the analytic solutions in C. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:880 / 888
页数:9
相关论文
共 50 条
  • [1] Singular Solutions of the Generalized Dhombres Functional Equation
    Reich, L.
    Smital, J.
    Stefankova, M.
    RESULTS IN MATHEMATICS, 2014, 65 (1-2) : 251 - 261
  • [2] Singular Solutions of the Generalized Dhombres Functional Equation
    L. Reich
    J. Smítal
    M. Štefánková
    Results in Mathematics, 2014, 65 : 251 - 261
  • [3] On a generalized Dhombres functional equation
    Kahlig P.
    Smítal J.
    aequationes mathematicae, 2001, 62 (1) : 18 - 29
  • [4] On regular solutions of the generalized Dhombres equation
    J. Smítal
    M. Štefánková
    Aequationes mathematicae, 2015, 89 : 57 - 61
  • [5] Local analytic solutions of the generalized Dhombres functional equation II
    Reich, Ludwig
    Smital, Jaroslav
    Stefankova, Marta
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (02) : 821 - 829
  • [6] On regular solutions of the generalized Dhombres equation
    Smital, J.
    Stefankova, M.
    AEQUATIONES MATHEMATICAE, 2015, 89 (01) : 57 - 61
  • [7] Formal solutions of the generalized Dhombres functional equation with value one at zero
    Tomaschek, Joerg
    Reich, Ludwig
    AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 117 - 126
  • [8] Formal solutions of the generalized Dhombres functional equation with value one at zero
    Jörg Tomaschek
    Ludwig Reich
    Aequationes mathematicae, 2012, 83 : 117 - 126
  • [9] On Regular Solutions of the Generalized Dhombres Equation II
    Reich, L.
    Smital, J.
    Stefankova, M.
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 521 - 528
  • [10] On Regular Solutions of the Generalized Dhombres Equation II
    L. Reich
    J. Smítal
    M. Štefánková
    Results in Mathematics, 2015, 67 : 521 - 528