On the regularity of optimal controls for state constrained problems

被引:0
|
作者
Shvartsman, IA [1 ]
Vinter, RB [1 ]
机构
[1] Univ London Imperial Coll Sci & Technol, London, England
来源
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5 | 2004年
关键词
D O I
10.1109/CDC.2004.1428729
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we summarize new results on the regularity of optimal controls for dynamic optimization problems with functional inequality constraints, a control constraint expressed in terms of a general closed convex set and a coercive cost function. Recently it has been shown that the linear independence condition on active state constraints, present in the earlier literature, can be replaced by a less restrictive, positive linear independence condition, that requires linear independence merely with respect to non-negative weighting parameters, provided the control constraint set is non-time varying. We show that, if the control constraint set, regarded as a time dependent multifunction, is merely Lipschitz continuous with respect to the time variable, then optimal controls can fail to be Lipschitz continuous. In these circumstance, however, a weaker regularity property (Holder continuity with Milder index 1/2) can be established. On the other hand, Lipschitz continuity of optimal controls is guaranteed for time varying control sets under a positive linear independence hypothesis, when the control constraint sets are described, at each time, by a finite collection of functional inequalities.
引用
收藏
页码:2285 / 2290
页数:6
相关论文
共 50 条