Complexity, action, and black holes

被引:539
作者
Brown, Adam R. [1 ,2 ]
Roberts, Daniel A. [3 ,4 ]
Susskind, Leonard [1 ,2 ]
Swingle, Brian [1 ,2 ]
Zhao, Ying [1 ,2 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
PHYSICAL LIMITS; ENTROPY; GEOMETRY; SPEED;
D O I
10.1103/PhysRevD.93.086006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the "Wheeler-DeWitt" patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.
引用
收藏
页数:32
相关论文
共 71 条
[1]  
Aaronson S., ARXIV11081791
[2]   TIME IN QUANTUM THEORY AND UNCERTAINTY RELATION FOR TIME AND ENERGY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1961, 122 (05) :1649-&
[3]   Holographic complexity [J].
Alishahiha, Mohsen .
PHYSICAL REVIEW D, 2015, 92 (12)
[4]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[5]  
[Anonymous], J HIGH ENERGY PHYS
[6]  
[Anonymous], ARXIV150101715
[7]  
[Anonymous], ARXIV12093304
[8]  
[Anonymous], ARXIVQUANTPH0501135
[9]  
[Anonymous], 2004, RELATIVISTS TOOLKIT
[10]  
[Anonymous], ARXIV151007637