FILTERING RANDOM LAYERING EFFECTS IN IMAGING

被引:9
作者
Borcea, L. [1 ]
del Cueto, F. Gonzalez [1 ]
Papanicolaou, G. [2 ]
Tsogka, C. [3 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Univ Crete, Dept Appl Math, GR-71409 Iraklion, Greece
基金
美国国家科学基金会;
关键词
array imaging; randomly layered media; filtering; WAVE-PROPAGATION;
D O I
10.1137/090760854
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Objects that are buried deep in heterogeneous media produce faint echoes which are difficult to distinguish from the backscattered field. Sensor array imaging in such media cannot work unless we filter out the backscattered echoes and enhance the coherent arrivals that carry information about the objects that we wish to image. We study such filters for imaging in strongly backscattering, finely layered media. The filters are based on a travel time transformation of the array data, the normal move-out, used frequently in connection with differential semblance velocity estimation in seismic imaging. In a previous paper [L. Borcea et al., Multiscale Model. Simul., 7 (2009), pp. 1267-1301] we showed that the filters can be used to remove coherent signals from strong plane reflectors. In this paper we show theoretically and with extensive numerical simulations that these filters, based on the normal move-out, can also remove the incoherent arrivals in the array data that are due to. ne random layering in the medium.
引用
收藏
页码:751 / 781
页数:31
相关论文
共 36 条
[1]  
[Anonymous], 1992, Earth soundings analysis, processing versus inversion
[2]   FREQUENCY CONTENT OF RANDOMLY SCATTERED SIGNALS [J].
ASCH, M ;
KOHLER, W ;
PAPANICOLAOU, G ;
POSTEL, M ;
WHITE, B .
SIAM REVIEW, 1991, 33 (04) :519-625
[3]   Statistical inversion from reflections of spherical waves by a randomly layered medium [J].
Asch, M ;
Kohler, W ;
Papanicolaou, G ;
Postel, M ;
White, B .
WAVES IN RANDOM MEDIA, 1996, 6 (04) :293-334
[4]  
ASCH M, 1990, THESIS NEW YORK U NE
[5]   Construction and analysis of a new mixed finite element allowing mass lumping [J].
Becache, E ;
Joly, P ;
Tsogka, C .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (11) :1281-1286
[6]   An analysis of new mixed finite elements for the approximation of wave propagation problems [J].
Bécache, E ;
Joly, P ;
Tsogka, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1053-1084
[7]  
BIONDI B, 2006, INVEST GEOPHYS, V14
[8]   STABILITY AND CONTROL OF STOCHASTIC-SYSTEMS WITH WIDEBAND NOISE DISTURBANCES .1. [J].
BLANKENSHIP, G ;
PAPANICOLAOU, GC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (03) :437-476
[9]  
Bleistein N., 2001, Mathematics of multidimensional seismic inversion
[10]   Theory and applications of time reversal and interferometric imaging [J].
Borcea, L ;
Papanicolaou, G ;
Tsogka, C .
INVERSE PROBLEMS, 2003, 19 (06) :S139-S164