Relaxation of convex functional:: The gap problem

被引:41
作者
Acerbi, E
Bouchitté, G
Fonseca, I [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
[3] Univ Toulon & Var, Dept Math, F-83957 La Garde, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2003年 / 20卷 / 03期
基金
美国国家科学基金会;
关键词
convexity; Besicovich covering theorem; Radon Nikodym derivative; Lavrentiev phenomenon;
D O I
10.1016/S0294-1449(02)00017-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the relaxed energy [GRAPHICS] admits the representation [GRAPHICS] where f is a convex, Caratheodory integrand satisfying a nonstandard "alpha-beta" growth hypothesis, beta is an element of [alpha, Nalpha (N - 1)). Sufficient conditions guaranteeing that mu(s)(u, (.)) = 0 are discussed. An example asserting that this representation may fail in the quasiconvex case is provided. (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:359 / 390
页数:32
相关论文
共 30 条
[1]   NEW LOWER SEMICONTINUITY RESULTS FOR POLYCONVEX INTEGRALS [J].
ACERBI, E ;
DALMASO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (03) :329-372
[2]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[3]   Phase transition with the line-tension effect [J].
Alberti, G ;
Bouchitte, G ;
Seppecher, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 144 (01) :1-46
[4]  
[Anonymous], 1995, RUSSIAN J MATH PHYS
[5]  
BALL JM, 1984, J FUNCT ANAL, V58, P225, DOI 10.1016/0022-1236(84)90041-7
[6]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[7]   The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent [J].
Bouchitte, G ;
Fonseca, I ;
Maly, J .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :463-479
[8]  
BOUCHITTE G, IN PRESS ARCH RATION
[9]  
Carbone L., 1990, RICHERCHE MAT, V39, P99
[10]   FURTHER REMARKS ON THE LOWER SEMICONTINUITY OF POLYCONVEX INTEGRALS [J].
CELADA, P ;
DALMASO, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (06) :661-691