Interfacial charge transfer and interaction in the MXene/TiO2 heterostructures

被引:31
作者
Xu, Lihua [1 ,2 ]
Wu, Tao [2 ]
Kent, Paul R. C. [3 ,4 ]
Jiang, De-en [1 ,2 ]
机构
[1] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[3] Oak Ridge Natl Lab, Computat Sci & Engn Div, POB 2009, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2009, Oak Ridge, TN 37831 USA
关键词
TOTAL-ENERGY CALCULATIONS; ELECTRONIC-PROPERTIES; TITANIUM CARBIDE; ION; MXENES; PERFORMANCE; DENSITY; TI3C2; FILMS;
D O I
10.1103/PhysRevMaterials.5.054007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hybrid materials of MXenes [two-dimensional (2D) carbides and nitrides] and transition-metal oxides have shown great promise in electrical energy storage (EES) and 2D heterostructures have been proposed as the next-generation electrode materials to expand the limits of current technology. Here we use first principles density functional theory to investigate the interfacial structure, energetics, and electronic properties of the heterostructures of MXenes (Tin+1CnT2; T = terminal groups) and anatase TiO2. We find that the greatest work-function differences are between OH-terminated MXene (1.6 eV) and anatase TiO2(101) (6.4 eV), resulting in the largest interfacial electron transfer (similar to 0.9 e/nm(2) across the interface) from MXene to the TiO2 layer. This interface also has the strongest adhesion and is further strengthened by hydrogen bond formation. For O-, F-, or mixed O-/F- terminated Tin+1Cn MXenes, electron transfer is minimal and interfacial adhesion is weak for their heterostructures with TiO2. The strong dependence of the interfacial properties of the MXene/TiO2 heterostructures on the surface chemistry of the MXenes will be useful to tune the heterostructures for EES applications.
引用
收藏
页数:8
相关论文
共 55 条
  • [1] Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes
    Ahmed, Bilal
    Anjum, Dalaver H.
    Gogotsi, Yury
    Alshareef, Husam N.
    [J]. NANO ENERGY, 2017, 34 : 249 - 256
  • [2] H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes
    Ahmed, Bilal
    Anjum, Dalaver H.
    Hedhili, Mohamed N.
    Gogotsi, Yury
    Alshareef, Husam N.
    [J]. NANOSCALE, 2016, 8 (14) : 7580 - 7587
  • [3] MXenes/graphene heterostructures for Li battery applications: a first principles study
    Aierken, Yierpan
    Sevik, Cem
    Gulseren, Oguz
    Peeters, Francois M.
    Cakir, Deniz
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (05) : 2337 - 2345
  • [4] Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene)
    Alhabeb, Mohamed
    Maleski, Kathleen
    Anasori, Babak
    Lelyukh, Pavel
    Clark, Leah
    Sin, Saleesha
    Gogotsi, Yury
    [J]. CHEMISTRY OF MATERIALS, 2017, 29 (18) : 7633 - 7644
  • [5] 2D metal carbides and nitrides (MXenes) for energy storage
    Anasori, Babak
    Lukatskaya, Maria R.
    Gogotsi, Yury
    [J]. NATURE REVIEWS MATERIALS, 2017, 2 (02):
  • [6] A density-functional model of the dispersion interaction
    Becke, AD
    Johnson, ER
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (15)
  • [7] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [8] Chakraborty P., 2019, ComprehensiveNanoscienceandNanotechnology, P319, DOI DOI 10.1016/B978-0-12-803581-8.10414-X
  • [9] Manipulating the mechanical properties of Ti2C MXene: Effect of substitutional doping
    Chakraborty, Poulami
    Das, Tilak
    Nafday, Dhani
    Boeri, Lilia
    Saha-Dasgupta, Tanusri
    [J]. PHYSICAL REVIEW B, 2017, 95 (18)
  • [10] Achieving high energy density and high power density with pseudocapacitive materials
    Choi, Christopher
    Ashby, David S.
    Butts, Danielle M.
    DeBlock, Ryan H.
    Wei, Qiulong
    Lau, Jonathan
    Dunn, Bruce
    [J]. NATURE REVIEWS MATERIALS, 2020, 5 (01) : 5 - 19