Functional characterization of wild-type and mutant human sialin

被引:87
|
作者
Morin, P [1 ]
Sagné, C [1 ]
Gasnier, B [1 ]
机构
[1] Inst Biol Physicochim, CNRS, UPR 1929, F-75005 Paris, France
来源
EMBO JOURNAL | 2004年 / 23卷 / 23期
关键词
lysosome; sialic acid; sialin; storage disease; transporter;
D O I
10.1038/sj.emboj.7600464
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The modification of cell surface lipids or proteins with sialic acid is essential for many biological processes and several diseases are caused by defective sialic acid metabolism. Sialic acids cleaved off from degraded sialoglyco-conjugates are exported from lysosomes by a membrane transporter, named sialin, which is defective in two allelic inherited diseases: infantile sialic acid storage disease (ISSD) and Salla disease. To develop a functional assay of human sialin, we redirected the protein to the plasma membrane by mutating a dileucine-based internalization motif. Cells expressing the plasmalemmal construct accumulated neuraminic acid at acidic pH by a process equivalent to lysosomal efflux. The assay was used to determine how pathogenic mutations affect transport. Interestingly, while two missense mutations and one small, in-frame deletion associated with ISSD abolished transport, the mutation causing Salla disease (R39C) slowed down, but did not stop, the transport cycle, thus explaining why the latter disorder is less severe. Since neurological symptoms predominate in Salla disease, our results suggest that sialin is rate-limiting to specific sialic acid-dependent processes of the nervous system.
引用
收藏
页码:4560 / 4570
页数:11
相关论文
共 50 条
  • [21] Δ7-Sterol-C5-desaturase:: molecular characterization and functional expression of wild-type and mutant alleles
    Husselstein, T
    Schaller, H
    Gachotte, D
    Benveniste, P
    PLANT MOLECULAR BIOLOGY, 1999, 39 (05) : 891 - 906
  • [22] Cellular trafficking of wild-type and mutant myocilin
    Jacobson, N
    Shepard, AR
    Clark, AF
    MOLECULAR BIOLOGY OF THE CELL, 2002, 13 : 237A - 237A
  • [23] WILD-TYPE AND MUTANT STOCKS OF ASPERGILLUS NIDULANS
    BARRATT, RW
    JOHNSON, GB
    OGATA, WN
    GENETICS, 1965, 52 (01) : 233 - &
  • [24] PHOTORESPONSES OF WILD-TYPE AND MUTANT DIKARYONS OF CHLAMYDOMONAS
    HIRSCHBERG, R
    HUTCHINSON, W
    CURRENT MICROBIOLOGY, 1980, 4 (05) : 287 - 291
  • [25] Neuromuscular synaptogenesis in wild-type and mutant zebrafish
    Panzer, JA
    Gibbs, SA
    Dosch, R
    Wagner, D
    Mullins, MC
    Granato, M
    Balice-Gordon, RJ
    DEVELOPMENTAL BIOLOGY, 2005, 285 (02) : 340 - 357
  • [26] Model for kinetics of wild-type and mutant kinesins
    Xie, P
    Dou, SX
    Wang, PY
    BIOSYSTEMS, 2006, 84 (01) : 24 - 38
  • [27] A DATABASE OF RECOMBINANT WILD-TYPE AND MUTANT SERPINS
    PATSTON, PA
    GETTINS, PGW
    THROMBOSIS AND HAEMOSTASIS, 1994, 72 (02) : 166 - 179
  • [28] Cancer: From Wild-Type to Mutant Huntingtin
    Thion, Morgane Sonia
    Humbert, Sandrine
    JOURNAL OF HUNTINGTONS DISEASE, 2018, 7 (03) : 201 - 208
  • [29] NEUROPHYSIOLOGY OF FLIGHT IN WILD-TYPE AND A MUTANT DROSOPHILA
    LEVINE, JD
    WYMAN, RJ
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (04) : 1050 - 1054
  • [30] ONCOGENICITY OF WILD-TYPE AND MUTANT STRAINS OF POLYOMA
    SIEGLER, R
    BENJAMIN, T
    PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, 1975, 16 (MAR): : 99 - 99