Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method

被引:28
作者
Yang, Yang [1 ]
Pang, Liping [1 ]
Ma, Xuefei [2 ]
Shen, Jie [3 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R China
[2] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[3] Liaoning Normal Univ, Sch Math, Dalian, Peoples R China
关键词
Nonconvex optimization; Nonsmooth optimization; Constrained programming; Exact penalty functions; Proximal bundle methods; Lower-C-2; CONVEX NONDIFFERENTIABLE MINIMIZATION; ALGORITHM;
D O I
10.1007/s10957-014-0523-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider a constrained nonconvex nonsmooth optimization, in which both objective and constraint functions may not be convex or smooth. With the help of the penalty function, we transform the problem into an unconstrained one and design an algorithm in proximal bundle method in which local convexification of the penalty function is utilized to deal with it. We show that, if adding a special constraint qualification, the penalty function can be an exact one, and the sequence generated by our algorithm converges to the KKT points of the problem under a moderate assumption. Finally, some illustrative examples are given to show the good performance of our algorithm.
引用
收藏
页码:900 / 925
页数:26
相关论文
共 25 条
[1]  
[Anonymous], NUMERICAL OPTIMIZATI
[2]  
[Anonymous], NONDIFFERENTIABLE OP
[3]  
[Anonymous], 1998, Variational Analysis
[4]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[5]  
Cheney EW., 1959, NUMER MATH, V1, P253, DOI [10.1007/bf01386389, DOI 10.1007/BF01386389]
[6]   A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization [J].
Fuduli, A ;
Gaudioso, M ;
Giallombardo, G .
OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (01) :89-102
[7]   Minimizing nonconvex nonsmooth functions via cutting planes and proximity control [J].
Fuduli, A ;
Gaudioso, M ;
Giallombardo, G .
SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (03) :743-756
[8]   Globally convergent limited memory bundle method for large-scale nonsmooth optimization [J].
Haarala, Napsu ;
Miettinen, Kaisa ;
Makela, Marko M. .
MATHEMATICAL PROGRAMMING, 2007, 109 (01) :181-205
[9]   Computing proximal points of nonconvex functions [J].
Hare, Warren ;
Sagastizabal, Claudia .
MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) :221-258
[10]   A REDISTRIBUTED PROXIMAL BUNDLE METHOD FOR NONCONVEX OPTIMIZATION [J].
Hare, Warren ;
Sagastizabal, Claudia .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) :2442-2473