Borophene as a promising anode material for sodium-ion batteries with high capacity and high rate capability using DFT

被引:53
作者
Liu, Jianhua [1 ]
Zhang, Cheng [1 ]
Xu, Lei [2 ]
Ju, Shaohua [2 ]
机构
[1] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Yunnan, Peoples R China
来源
RSC ADVANCES | 2018年 / 8卷 / 32期
关键词
ELECTRONIC-STRUCTURE; LI-ION; DIRECTIONAL DIFFUSION; MOLECULAR-DYNAMICS; AB-INITIO; 1ST-PRINCIPLES; PERFORMANCE; GRAPHENE; LITHIUM; ADSORPTION;
D O I
10.1039/c8ra01942h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional boron synthesized by the chemical vapor deposition method is an atomically thin layer of boron with both light weight and metallicity. To investigate the potential of borophene as an anode material in sodium-ion batteries, first-principles calculations and ab initio molecular dynamics simulations were carried out. The calculated results reveal that after introducing vacancy defects, the special puckered structure becomes relatively flat and the metallic nature of the defective borophene is enhanced, while the defects in borophene can weaken sodium adsorption. A single sodium atom is preferentially absorbed on the BV site. The adsorption energies gradually reduce with an increase in sodium concentration due to the increased Na-Na repulsion. The fully sodium storage phase of borophene corresponds to NaB2 with a theoretical specific capacity of 1240 mA h g(-1), which is much larger than that of other two-dimensional materials. Most interestingly, sodium ion flows in the furrows of puckered borophene are extremely fast with a low energy barrier of 30 meV. Meanwhile, sodium diffusion on borophene was found to be highly anisotropic, as further verified by the results of the ab initio molecular dynamics simulations. The sodiated-borophene nanostructure shows enhanced electronic conductivity during the whole sodiation process, which is superior to other anode materials. Borophene is expected to be a promising candidate with high capacity and high rate capability for anode materials in sodium-ion batteries.
引用
收藏
页码:17773 / 17785
页数:13
相关论文
共 72 条
  • [1] Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory
    Baggetto, Loic
    Ganesh, P.
    Sun, Che-Nan
    Meisner, Roberta A.
    Zawodzinski, Thomas A.
    Veith, Gabriel M.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (27) : 7985 - 7994
  • [2] Baker T. A., 2008, J CHEM PHYS, V129, P427
  • [3] Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS2 Nanosheets
    Bang, Gyeong Sook
    Nam, Kwan Woo
    Kim, Jong Yun
    Shin, Jongwoo
    Choi, Jang Wook
    Choi, Sung-Yool
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) : 7084 - 7089
  • [4] Adsorption of Modified Arg, Lys, Asp, and Gin to Dry and Hydrated ZnO Surface: A Density Functional Theory Study
    Buonocore, Francesco
    Arcangeli, Caterina
    Gala, Fabrizio
    Zollo, Giuseppe
    Celino, Massimo
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (35) : 11791 - 11797
  • [5] Challenges for Na-ion Negative Electrodes
    Chevrier, V. L.
    Ceder, G.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) : A1011 - A1014
  • [6] A Comparative First-Principles Study on Sodiation of Silicon, Germanium, and Tin for Sodium-Ion Batteries
    Chou, Chia-Yun
    Lee, Myungsuk
    Hwang, Gyeong S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (27) : 14843 - 14850
  • [7] Tin and graphite based nanocomposites: Potential anode for sodium ion batteries
    Datta, Moni Kanchan
    Epur, Rigved
    Saha, Partha
    Kadakia, Karan
    Park, Sung Kyoo
    Kuma, Prashant N.
    [J]. JOURNAL OF POWER SOURCES, 2013, 225 : 316 - 322
  • [8] MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes
    David, Lamuel
    Bhandavat, Romil
    Singh, Gurpreet
    [J]. ACS NANO, 2014, 8 (02) : 1759 - 1770
  • [9] Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes
    Ding, Jia
    Wang, Huanlei
    Li, Zhi
    Kohandehghan, Alireza
    Cui, Kai
    Xu, Zhanwei
    Zahiri, Beniamin
    Tan, Xuehai
    Lotfabad, Elmira Memarzadeh
    Olsen, Brian C.
    Mitlin, David
    [J]. ACS NANO, 2013, 7 (12) : 11004 - 11015
  • [10] ELECTROCHEMICAL INSERTION OF SODIUM INTO CARBON
    DOEFF, MM
    MA, YP
    VISCO, SJ
    DEJONGHE, LC
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (12) : L169 - L170