Upper bounds on the maximum degree of class two graphs on surfaces

被引:0
作者
Horacek, Katie [1 ]
Luo, Rong [2 ]
Miao, Zhengke [3 ]
Zhao, Yue [4 ]
机构
[1] Frostburg State Univ, Dept Math, Frostburg, MD 21532 USA
[2] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[3] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[4] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Edge colorings; Class one; Class two; Critical graphs; Surfaces; CHROMATIC INDEX; EDGE COLORINGS; SIGMA;
D O I
10.1016/j.disc.2019.111738
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each surface Sigma, we define Delta(Sigma)=max{Delta(G)vertical bar G is a class two graph with maximum degree Delta(G) that can be embedded on Sigma}. Hence Vizing's Planar Graph Conjecture can be restated as Delta(Sigma) = 5 if Sigma is a sphere. For a surface Sigma with Euler characteristic chi, it is known Delta(Sigma) >= H(chi) - 1 where H(chi) is the Heawood number of the surface and if the Euler characteristic chi is an element of {-7, -6, ..., -1, 0}, Delta(Sigma) is already known. In this paper, we study critical graphs on general surfaces and show that if G is a critical graph embeddable on a surface Sigma with Euler characteristic chi <= -8, then Delta(G) <= H(chi) (or H(chi) + 1) for some special families of graphs, namely if the minimum degree is at most 11 or if Delta is very large etc. As applications, we show that Delta(Sigma) <= H(chi) if chi is an element of (-22, -21, .., -8) \ {-19, -16 and Delta(Sigma) <= H(chi) + 1 if chi is an element of (-53, ..., -23} boolean OR (-19, -16}. Combining this with jungerman (1974), it follows that if chi = -12 and Sigma is orientable, then, Delta(Sigma) = H(chi). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 22 条
  • [1] Hamiltonicity of edge chromatic critical graphs
    Chen, Guantao
    Chen, Xiaodong
    Zhao, Yue
    [J]. DISCRETE MATHEMATICS, 2017, 340 (12) : 3011 - 3015
  • [2] Chetwynd A. G., 1989, ANN DISCRETE MATH, P91
  • [3] Edge colorings of graphs embeddable in a surface of low genus
    Hind, H
    Zhao, Y
    [J]. DISCRETE MATHEMATICS, 1998, 190 (1-3) : 107 - 114
  • [4] Finding Δ (Σ) for a Surface Σ of Characteristic-6 and-7
    Horacek, Katie
    Luo, Rong
    Miao, Zhengke
    Zhao, Yue
    [J]. GRAPHS AND COMBINATORICS, 2017, 33 (04) : 929 - 944
  • [5] Jungerman M., 1974, Journal of Combinatorial Theory, Series B, V16, P293, DOI 10.1016/0095-8956(74)90076-8
  • [6] Finding the exact bound of the maximum degrees of class two graphs embeddable in a surface of characteristic ∈∈{-1,-2,-3}
    Luo, Rong
    Zhao, Yue
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (04) : 707 - 720
  • [7] Finding Δ(Σ) for a Surface Σ of Characteristic-4
    Luo, Rong
    Miao, Zhengke
    Zhao, Yue
    [J]. JOURNAL OF GRAPH THEORY, 2016, 83 (03) : 277 - 302
  • [8] Hamiltonian Cycles in Critical Graphs with Large Maximum Degree
    Luo, Rong
    Miao, Zhengke
    Zhao, Yue
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (05) : 2019 - 2028
  • [9] Finding Δ(Σ) for a Surface Σ of Characteristic χ(Σ) =-5
    Luo, Rong
    Zhao, Yue
    [J]. JOURNAL OF GRAPH THEORY, 2011, 68 (02) : 148 - 168
  • [10] The Size of Edge Chromatic Critical Graphs with Maximum Degree 6
    Luo, Rong
    Miao, Lianying
    Zhao, Yue
    [J]. JOURNAL OF GRAPH THEORY, 2009, 60 (02) : 149 - 171