Probing nanoparticle substrate interactions with synchrotron infrared nanospectroscopy: Coupling gold nanorod Fabry-Perot resonances with SiO2 and h-BN phonons

被引:4
作者
Liberko, Joseph J. [1 ]
Busche, Jacob A. [2 ]
Seils, Robyn [3 ]
Bechtel, Hans A. [4 ]
Rack, Philip D. [3 ,5 ]
Masiello, David J. [2 ]
Camden, Jon P. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[4] Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA
[5] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
关键词
LIGHT-MATTER INTERACTION; SURFACE SCATTERING; OPTICAL-PROPERTIES; FIELD MICROSCOPY; POLARITONS; MODES; SPECTROSCOPY; ABSORPTION; NITRIDE; ORDER;
D O I
10.1103/PhysRevB.104.035412
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Spectroscopic interrogation of materials in the midinfrared with nanometer spatial resolution is inherently difficult due to the long wavelengths involved, reduced detector efficiencies, and limited availability of spectrally bright, coherent light sources. Technological advances are driving techniques that overcome these challenges, enabling material characterization in this relatively unexplored spectral regime. Synchrotron infrared nanospectroscopy (SINS) is an imaging technique that provides local sample information of nanoscale target specimens in an experimental energy window between 330 and 5000 cm(-1). Using SINS, we analyzed a series of individual gold nanorods patterned on a SiO2 substrate and on a flake of hexagonal boron nitride. The SINS spectra reveal interactions between the nanorod photonic Fabry-Perot resonances and the surface phonon polaritons of each substrate, which are characterized as avoided crossings. A coupled oscillator model of the hybrid system provides a deeper understanding of the coupling and provides a theoretical framework for future exploration.
引用
收藏
页数:10
相关论文
共 75 条
[31]   Enhancement of the Electron-Phonon Scattering Induced by Intrinsic Surface Plasmon-Phonon Polaritons [J].
Hagenmueller, David ;
Schachenmayer, Johannes ;
Genet, Cyriaque ;
Ebbesen, Thomas W. ;
Pupillo, Guido .
ACS PHOTONICS, 2019, 6 (04) :1073-1081
[32]   Phonon-enhanced light-matter interaction at the nanometre scale [J].
Hillenbrand, R ;
Taubner, T ;
Keilmann, F .
NATURE, 2002, 418 (6894) :159-162
[33]   OPTICAL-PROPERTIES OF PYROLYTIC BORON-NITRIDE IN THE ENERGY-RANGE 0.05-10 EV [J].
HOFFMAN, DM ;
DOLL, GL ;
EKLUND, PC .
PHYSICAL REVIEW B, 1984, 30 (10) :6051-6056
[34]   Plasmon-Modulated Photoluminescence of Individual Gold Nanostructures [J].
Hu, Hailong ;
Duan, Huigao ;
Yang, Joel K. W. ;
Shen, Ze Xiang .
ACS NANO, 2012, 6 (11) :10147-10155
[35]   Strong coupling between phonon-polaritons and plasmonic nanorods [J].
Huck, Christian ;
Vogt, Jochen ;
Neuman, Tomas ;
Nagao, Tadaaki ;
Hillenbrand, Rainer ;
Aizpurua, Javier ;
Pucci, Annemarie ;
Neubrech, Frank .
OPTICS EXPRESS, 2016, 24 (22) :25528-25539
[36]   Transformation properties of spheroidal multipole moments and potentials [J].
Jansen, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (07) :1375-1394
[37]   Near-field microscopy by elastic light scattering from a tip [J].
Keilmann, F ;
Hillenbrand, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1817) :787-805
[38]   Far Infrared Synchrotron Near-Field Nanoimaging and Nanospectroscopy [J].
Khatib, Omar ;
Bechtel, Hans A. ;
Martin, Michael C. ;
Raschke, Markus B. ;
Carr, G. Lawrence .
ACS PHOTONICS, 2018, 5 (07) :2773-2779
[39]   Vacuum Rabi splitting in semiconductors [J].
Khitrova, G ;
Gibbs, HM ;
Kira, M ;
Koch, SW ;
Scherer, A .
NATURE PHYSICS, 2006, 2 (02) :81-90
[40]   Recent progress of nano-technology with NSOM [J].
Kim, JunHo ;
Song, Ki-Bong .
MICRON, 2007, 38 (04) :409-426