Wavelet-based feature extraction from oceanographic images
被引:49
作者:
Simhadri, KK
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Comp Sci, Robot Res Lab, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Comp Sci, Robot Res Lab, Baton Rouge, LA 70803 USA
Simhadri, KK
[1
]
Iyengar, SS
论文数: 0引用数: 0
h-index: 0
机构:Louisiana State Univ, Dept Comp Sci, Robot Res Lab, Baton Rouge, LA 70803 USA
Iyengar, SS
Holyer, RJ
论文数: 0引用数: 0
h-index: 0
机构:Louisiana State Univ, Dept Comp Sci, Robot Res Lab, Baton Rouge, LA 70803 USA
Holyer, RJ
Lybanon, M
论文数: 0引用数: 0
h-index: 0
机构:Louisiana State Univ, Dept Comp Sci, Robot Res Lab, Baton Rouge, LA 70803 USA
Lybanon, M
Zachary, JM
论文数: 0引用数: 0
h-index: 0
机构:Louisiana State Univ, Dept Comp Sci, Robot Res Lab, Baton Rouge, LA 70803 USA
Zachary, JM
机构:
[1] Louisiana State Univ, Dept Comp Sci, Robot Res Lab, Baton Rouge, LA 70803 USA
[2] USN, Res Lab, Remote Sensing Div, Stennis Space Ctr, MS 39529 USA
来源:
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
|
1998年
/
36卷
/
03期
Features in satellite images of the oceans often have weak edges. These images also have a significant amount of noise, which is either due to the clouds or atmospheric humidity. The presence of noise compounds the problems associated with the detection of features, as the use of any traditional noise removal technique will also result in the removal of weak edges. Recently, there have been rapid advances in image processing as a result of the development of the mathematical theory of wavelet transforms. This theory led to multifrequency channel decomposition of images, which further led to the evolution of important algorithms for the reconstruction of images at various resolutions from the decompositions. The possibility of analyzing images at various resolutions can be useful not only in the suppression of noise, but also in the detection of fine features and their classification. This paper presents a new computational scheme based on multiresolution decomposition for extracting the features of interest from the oceanographic images by suppressing the noise. The multiresolution analysis from the median presented by Starck-Murtagh-Bijaoui [4], [5] is used for the noise suppression.