Wavelet-based feature extraction from oceanographic images

被引:49
作者
Simhadri, KK [1 ]
Iyengar, SS
Holyer, RJ
Lybanon, M
Zachary, JM
机构
[1] Louisiana State Univ, Dept Comp Sci, Robot Res Lab, Baton Rouge, LA 70803 USA
[2] USN, Res Lab, Remote Sensing Div, Stennis Space Ctr, MS 39529 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 1998年 / 36卷 / 03期
关键词
edge detection; feature extraction; image processing; multiresolution; noise suppression; wavelet transform;
D O I
10.1109/36.673670
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Features in satellite images of the oceans often have weak edges. These images also have a significant amount of noise, which is either due to the clouds or atmospheric humidity. The presence of noise compounds the problems associated with the detection of features, as the use of any traditional noise removal technique will also result in the removal of weak edges. Recently, there have been rapid advances in image processing as a result of the development of the mathematical theory of wavelet transforms. This theory led to multifrequency channel decomposition of images, which further led to the evolution of important algorithms for the reconstruction of images at various resolutions from the decompositions. The possibility of analyzing images at various resolutions can be useful not only in the suppression of noise, but also in the detection of fine features and their classification. This paper presents a new computational scheme based on multiresolution decomposition for extracting the features of interest from the oceanographic images by suppressing the noise. The multiresolution analysis from the median presented by Starck-Murtagh-Bijaoui [4], [5] is used for the noise suppression.
引用
收藏
页码:767 / 778
页数:12
相关论文
共 21 条