Ensemble Learning Approaches for Retinal Vessel Segmentation

被引:11
作者
Ribeiro, Alexandrine [1 ]
Lopes, Ana P. [1 ]
Silva, Carlos A. [1 ]
机构
[1] Univ Minho, Dept Elect, Braga, Portugal
来源
2019 6TH IEEE PORTUGUESE MEETING IN BIOENGINEERING (ENBENG) | 2019年
关键词
Fully convolutional network; Retinal vessel segmentation; Ensemble Learning; IMAGES; RISK;
D O I
10.1109/enbeng.2019.8692566
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Retinal vessel analysis of fundus images is an important practice for the screening and diagnosis of related diseases. Yet, automatic segmentation remains a challenging task. It is well known that ensemble learning methods show great effectiveness improving models performance in a number of applications. Bearing this in mind, in this paper, we explore the implementation of two ensemble techniques, Stochastic Weight Averaging and Snapshot Ensembles, for retinal vessel segmentation. The proposed methods are verified on DRIVE database and it shows higher performance, in terms of Acc, when compared with other state-of-the-art methods. Also, our results hint that may be possible to further improve the segmentation performance, tuning these ensemble methods.
引用
收藏
页数:4
相关论文
共 19 条
[1]  
Athiwaratkun Ben, 2018, ARXIV180605594
[2]   Optimizing the trainable B-COSFIRE filter for retinal blood vessel segmentation [J].
Badawi, Sufian A. ;
Fraz, Muhammad Moazam .
PEERJ, 2018, 6
[3]  
Fernandez A., 2018, LEARNING IMBALANCED, P147, DOI DOI 10.1007/978-3-319-98074-4_7
[4]   Blood vessel segmentation methodologies in retinal images - A survey [J].
Fraz, M. M. ;
Remagnino, P. ;
Hoppe, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Barman, S. A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :407-433
[5]   An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation [J].
Fraz, Muhammad Moazam ;
Remagnino, Paolo ;
Hoppe, Andreas ;
Uyyanonvara, Bunyarit ;
Rudnicka, Alicja R. ;
Owen, Christopher G. ;
Barman, Sarah A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (09) :2538-2548
[6]   Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function [J].
Hu, Kai ;
Zhang, Zhenzhen ;
Niu, Xiaorui ;
Zhang, Yuan ;
Cao, Chunhong ;
Xiao, Fen ;
Gao, Xieping .
NEUROCOMPUTING, 2018, 309 :179-191
[7]  
Huang G., 2017, Snapshot ensembles: train 1, get M for free
[8]  
Izmailov P, 2018, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P876
[9]   A review of vessel extraction techniques and algorithms [J].
Kirbas, C ;
Quek, F .
ACM COMPUTING SURVEYS, 2004, 36 (02) :81-121
[10]  
Lahiri A, 2016, IEEE ENG MED BIO, P1340, DOI 10.1109/EMBC.2016.7590955