VGF-Net: Visual-Geometric fusion learning for simultaneous drone navigation and height mapping

被引:13
作者
Liu, Yilin [1 ]
Xie, Ke [1 ]
Huang, Hui [1 ]
机构
[1] Shenzhen Univ, Shenzhen, Peoples R China
关键词
Attention model - Geometric fusion - Geometric information - Geometric objects - Geometric relationships - Geometric representation - Mapping systems - Visual information;
D O I
10.1016/j.gmod.2021.101108
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The drone navigation requires the comprehensive understanding of both visual and geometric information in the 3D world. In this paper, we present a Visual Geometric Fusion Network (VGF-Net), a deep network for the fusion analysis of visual/geometric data and the construction of 2.5D height maps for simultaneous drone navigation in novel environments. Given an initial rough height map and a sequence of RGB images, our VGF-Net extracts the visual information of the scene, along with a sparse set of 3D keypoints that capture the geometric relationship between objects in the scene. Driven by the data, VGF-Net adaptively fuses visual and geometric information, forming a unified Visual-Geometric Representation. This representation is fed to a new Directional Attention Model (DAM), which helps enhance the visual-geometric object relationship and propagates the informative data to dynamically refine the height map and the corresponding keypoints. An entire end-to end information fusion and mapping system is formed, demonstrating remarkable robustness and high accuracy on the autonomous drone navigation across complex indoor and large-scale outdoor scenes.
引用
收藏
页数:9
相关论文
共 29 条
[1]  
[Anonymous], 2018, ADV NEURAL INFORM PR
[2]  
[Anonymous], 2020, P C ROB LEARN CORL
[3]   3D Semantic Parsing of Large-Scale Indoor Spaces [J].
Armeni, Iro ;
Sener, Ozan ;
Zamir, Amir R. ;
Jiang, Helen ;
Brilakis, Ioannis ;
Fischer, Martin ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1534-1543
[4]  
Bansal Somil, 2020, C ROBOT LEARNING, P420
[5]  
Bian JW, 2019, ADV NEUR IN, V32
[6]   Depth Synthesis and Local Warps for Plausible Image-Based Navigation [J].
Chaurasia, Gaurav ;
Duchene, Sylvain ;
Sorkine-Hornung, Olga ;
Drettakis, George .
ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (03)
[7]  
Chen K., 2019, PROC ROBOTICS SCI SY, P1
[8]   Direct Sparse Odometry [J].
Engel, Jakob ;
Koltun, Vladlen ;
Cremers, Daniel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (03) :611-625
[9]   LSD-SLAM: Large-Scale Direct Monocular SLAM [J].
Engel, Jakob ;
Schoeps, Thomas ;
Cremers, Daniel .
COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 :834-849
[10]   Unsupervised Monocular Depth Estimation with Left-Right Consistency [J].
Godard, Clement ;
Mac Aodha, Oisin ;
Brostow, Gabriel J. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6602-6611