Optimal Disturbances of Bistable Time-Delay Systems Modeling Virus Infections

被引:6
|
作者
Bocharov, G. A. [1 ]
Nechepurenko, Yu. M. [1 ,2 ]
Khristichenko, M. Yu. [2 ]
Grebennikov, D. S. [3 ]
机构
[1] Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia
[2] Russian Acad Sci, Keldysh Inst Appl Math, Moscow 125047, Russia
[3] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
BIOLOGY; TOOLS;
D O I
10.1134/S1064562418050058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For bistable time-delay dynamical systems modeling the dynamics of viral infections and the virus induced immune response, an efficient approach is proposed for constructing optimal disturbances of steady states with a high viral load that transfer the system to a state with a low viral load. Functions approximating the behavior of drugs within the framework of well-known pharmacokinetic models are used as basis functions. Optimal disturbances are sought in the W-2(1) norm. It is shown that optimal disturbances found in this norm are superior to those found in the L-2 norm as applied to the development of adequate therapeutic strategies.
引用
收藏
页码:313 / 316
页数:4
相关论文
共 50 条
  • [21] Approximate design of optimal output tracking controller for time-delay systems with sinusoidal disturbances
    Wang, Xiao-Han
    Tang, Gong-You
    Wang, Hai-Hong
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1574 - +
  • [22] Approximate optimal tracking control for nonlinear time-delay systems under persistent disturbances
    College of Information Science and Engineering, Ocean University of China, Qingdao 266071, China
    不详
    Dianji yu Kongzhi Xuebao, 2008, 2 (206-212):
  • [23] Complete Rejection of Periodic Disturbances in Time-Delay Systems
    Liu Bo
    Chen Xin
    She Jinhua
    Wu Min
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 3736 - 3739
  • [24] Dynamic Predictor for Linear Time-Delay Systems with Disturbances
    Caballero-Barragan, H.
    Osuna-Ibarra, L. P.
    Loukianov, A. G.
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2290 - 2295
  • [25] Optimal disturbances for periodic solutions of time-delay differential equations
    Khristichenko, Michael Yu
    Nechepurenko, Yuri M.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2022, 37 (04) : 203 - 212
  • [26] COMPUTATION OF OPTIMAL CONTROL FOR TIME-DELAY SYSTEMS
    AGGARWAL, JK
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1970, AC15 (06) : 683 - &
  • [27] OPTIMAL CONTROL OF LINEAR TIME-DELAY SYSTEMS
    ELLER, DH
    AGGARWAL, JK
    BANKS, HT
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (06) : 678 - &
  • [28] OPTIMAL CONTROL APPROXIMATIONS FOR TIME-DELAY SYSTEMS
    HESS, RA
    AIAA JOURNAL, 1972, 10 (11) : 1536 - +
  • [29] Observer-based approximate optimal tracking control for time-delay systems with external disturbances
    Su, Hao
    Tang, Gong-You
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (12) : 2837 - 2846
  • [30] Optimal tracking control for linear time-delay large-scale systems with persistent disturbances
    Tang Ruichun~1
    2.Huawei Technologies Co.
    3.Coll.of Mathematics and Computer Science
    JournalofSystemsEngineeringandElectronics, 2009, 20 (05) : 1058 - 1064