Optimal Disturbances of Bistable Time-Delay Systems Modeling Virus Infections

被引:6
|
作者
Bocharov, G. A. [1 ]
Nechepurenko, Yu. M. [1 ,2 ]
Khristichenko, M. Yu. [2 ]
Grebennikov, D. S. [3 ]
机构
[1] Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia
[2] Russian Acad Sci, Keldysh Inst Appl Math, Moscow 125047, Russia
[3] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
BIOLOGY; TOOLS;
D O I
10.1134/S1064562418050058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For bistable time-delay dynamical systems modeling the dynamics of viral infections and the virus induced immune response, an efficient approach is proposed for constructing optimal disturbances of steady states with a high viral load that transfer the system to a state with a low viral load. Functions approximating the behavior of drugs within the framework of well-known pharmacokinetic models are used as basis functions. Optimal disturbances are sought in the W-2(1) norm. It is shown that optimal disturbances found in this norm are superior to those found in the L-2 norm as applied to the development of adequate therapeutic strategies.
引用
收藏
页码:313 / 316
页数:4
相关论文
共 50 条
  • [1] Optimal Disturbances of Bistable Time-Delay Systems Modeling Virus Infections
    G. A. Bocharov
    Yu. M. Nechepurenko
    M. Yu. Khristichenko
    D. S. Grebennikov
    Doklady Mathematics, 2018, 98 : 313 - 316
  • [2] No-Time-Delay Optimal Disturbances Rejection Control of Time-Delay Bilinear Systems with Disturbances
    Gao De-xin
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 2201 - 2204
  • [3] Optimal Control of Nonlinear Time-Delay Systems with Persistent Disturbances
    G. Y. Tang
    Y. D. Zhao
    Journal of Optimization Theory and Applications, 2007, 132 : 307 - 320
  • [4] Optimal control of nonlinear time-delay systems with persistent disturbances
    Tang, G. Y.
    Zhao, Y. D.
    Zhao, Q. C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 132 (02) : 307 - 320
  • [5] Dependence of optimal disturbances on periodic solution phases for time-delay systems
    Khristichenko, Michael Yu.
    Nechepurenko, Yuri M.
    Bocharov, Gennady A.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2023, 38 (02) : 89 - 98
  • [8] Optimal sinusoidal disturbances damping for singularly perturbed systems with time-delay
    Tang, Gong-You
    Zhang, Bao-Lin
    Zhao, Yan-Dong
    Zhang, Shu-Mei
    JOURNAL OF SOUND AND VIBRATION, 2007, 300 (1-2) : 368 - 378
  • [9] Optimal disturbances rejection control for singularly perturbed systems with time-delay
    Zhang, Baolin
    Tang, Gongyou
    Zhao, Yandong
    High Technology Letters, 2008, 14 (01) : 40 - 44
  • [10] Approximately optimal tracking control for discrete time-delay systems with disturbances
    Tang, Gongyou
    Sun, Huiying
    Pang, Haiping
    PROGRESS IN NATURAL SCIENCE, 2008, 18 (02) : 225 - 231