Optimal resilience of modular interacting networks

被引:73
作者
Dong, Gaogao [1 ,2 ,3 ]
Wang, Fan [1 ,4 ]
Shekhtman, Louis M. [5 ]
Danziger, Michael M. [5 ]
Fan, Jingfang [6 ,7 ]
Du, Ruijin [1 ,8 ]
Liu, Jianguo [9 ,10 ]
Tian, Lixin [11 ]
Stanley, H. Eugene [2 ,3 ]
Havlin, Shlomo [4 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[5] Northeastern Univ, Network Sci Inst, Ctr Complex Network Res, Boston, MA 02115 USA
[6] Beijing Normal Univ, Sch Syst Sci, Beijing 100875, Peoples R China
[7] Potsdam Inst Climate Impact Res, Earth Syst Anal, D-14412 Potsdam, Germany
[8] Jiangsu Univ, Energy Dev & Environm Protect Strategy Res Ctr, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[9] Shanghai Univ Finance & Econ, Inst Accounting & Finance, Shanghai 200443, Peoples R China
[10] Xinjiang Univ Finance & Econ, Sch Publ Management, Urumqi 830012, Peoples R China
[11] Nanjing Normal Univ, Sch Math Sci, Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Peoples R China
基金
以色列科学基金会; 中国国家自然科学基金; 国家重点研发计划; 美国国家科学基金会;
关键词
interacting network; resilience; percolation; optimal phenomenon; COMPLEX NETWORKS; MERGERS; DETERMINANTS;
D O I
10.1073/pnas.1922831118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coupling between networks is widely prevalent in real systems and has dramatic effects on their resilience and functional properties. However, current theoretical models tend to assume homogeneous coupling where all the various subcomponents interact with one another, whereas real-world systems tend to have various different coupling patterns. We develop two frameworks to explore the resilience of such modular networks, including specific deterministic coupling patterns and coupling patterns where specific subnetworks are connected randomly. We find both analytically and numerically that the location of the percolation phase transition varies nonmonotonically with the fraction of interconnected nodes when the total number of interconnecting links remains fixed. Furthermore, there exists an optimal fraction r* of interconnected nodes where the system becomes optimally resilient and is able to withstand more damage. Our results suggest that, although the exact location of the optimal r* varies based on the coupling patterns, for all coupling patterns, there exists such an optimal point. Our findings provide a deeper understanding of network resilience and show how networks can be optimized based on their specific coupling patterns.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Leicht EA, 2009, Arxiv, DOI [arXiv:0907.0894, DOI 10.48550/ARXIV.0907.0894]
  • [2] Link communities reveal multiscale complexity in networks
    Ahn, Yong-Yeol
    Bagrow, James P.
    Lehmann, Sune
    [J]. NATURE, 2010, 466 (7307) : 761 - U11
  • [3] Statistical mechanics of complex networks
    Albert, R
    Barabási, AL
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 47 - 97
  • [4] [Anonymous], 2010, Lectures in Complex Networks
  • [5] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [6] Barrat A, 2008, DYNAMICAL PROCESSES
  • [7] Complex networks: Structure and dynamics
    Boccaletti, S.
    Latora, V.
    Moreno, Y.
    Chavez, M.
    Hwang, D. -U.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5): : 175 - 308
  • [8] The structure and dynamics of multilayer networks
    Boccaletti, S.
    Bianconi, G.
    Criado, R.
    del Genio, C. I.
    Gomez-Gardenes, J.
    Romance, M.
    Sendina-Nadal, I.
    Wang, Z.
    Zanin, M.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01): : 1 - 122
  • [9] Navigability of complex networks
    Boguna, Marian
    Krioukov, Dmitri
    Claffy, K. C.
    [J]. NATURE PHYSICS, 2009, 5 (01) : 74 - 80
  • [10] Catastrophic cascade of failures in interdependent networks
    Buldyrev, Sergey V.
    Parshani, Roni
    Paul, Gerald
    Stanley, H. Eugene
    Havlin, Shlomo
    [J]. NATURE, 2010, 464 (7291) : 1025 - 1028