High-voltage liquid electrolytes for Li batteries: progress and perspectives

被引:543
|
作者
Fan, Xiulin [1 ,2 ]
Wang, Chunsheng [3 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[3] Univ Maryland, Dept Chem & Bimol Engn, College Pk, MD 20742 USA
基金
中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; WATER-IN-SALT; ETHYLENE-CARBONATE-FREE; SULFONE-BASED ELECTROLYTES; ENHANCED ELECTROCHEMICAL PERFORMANCE; MANGANESE OXIDE CATHODE; TRANSITION-METAL DISSOLUTION; PYRIDINE-BORON-TRIFLUORIDE; SURFACE-FILM FORMATION; ELEVATED-TEMPERATURE PERFORMANCE;
D O I
10.1039/d1cs00450f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Since the advent of the Li ion batteries (LIBs), the energy density has been tripled, mainly attributed to the increase of the electrode capacities. Now, the capacity of transition metal oxide cathodes is approaching the limit due to the stability limitation of the electrolytes. To further promote the energy density of LIBs, the most promising strategies are to enhance the cut-off voltage of the prevailing cathodes or explore novel high-capacity and high-voltage cathode materials, and also replacing the graphite anode with Si/Si-C or Li metal. However, the commercial ethylene carbonate (EC)-based electrolytes with relatively low anodic stability of similar to 4.3 V vs. Li+/Li cannot sustain high-voltage cathodes. The bottleneck restricting the electrochemical performance in Li batteries has veered towards new electrolyte compositions catering for aggressive next-generation cathodes and Si/Si-C or Li metal anodes, since the oxidation-resistance of the electrolytes and the in situ formed cathode electrolyte interphase (CEI) layers at the high-voltage cathodes and solid electrolyte interphase (SEI) layers on anodes critically control the electrochemical performance of these high-voltage Li batteries. In this review, we present a comprehensive and in-depth overview on the recent advances, fundamental mechanisms, scientific challenges, and design strategies for the novel high-voltage electrolyte systems, especially focused on stability issues of the electrolytes, the compatibility and interactions between the electrolytes and the electrodes, and reaction mechanisms. Finally, novel insights, promising directions and potential solutions for high voltage electrolytes associated with effective SEI/CEI layers are proposed to motivate revolutionary next-generation high-voltage Li battery chemistries.
引用
收藏
页码:10486 / 10566
页数:81
相关论文
共 50 条
  • [1] High-voltage and intrinsically safe electrolytes for Li metal batteries
    Xu, Zhixin
    Zhang, Xiyue
    Yang, Jun
    Cui, Xuzixu
    Nuli, Yanna
    Wang, Jiulin
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [2] High-Voltage Electrolytes Based on Adiponitrile for Li-Ion Batteries
    Abu-Lebdeh, Yaser
    Davidson, Isobel
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) : A60 - A65
  • [3] Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes
    Chen, Shimou
    Wen, Kaihua
    Fan, Juntian
    Bando, Yoshio
    Golberg, Dmitri
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (25) : 11631 - 11663
  • [4] Electrolytes for high-voltage lithium batteries
    Jia, Hao
    Xu, Wu
    TRENDS IN CHEMISTRY, 2022, 4 (07): : 627 - 642
  • [5] Ionic liquid electrolytes for high-voltage, lithium-ion batteries
    Brutti, S.
    Simonetti, E.
    De Francesco, M.
    Sarra, A.
    Paolone, A.
    Palumbo, O.
    Fantini, S.
    Lin, R.
    Falgayrat, A.
    Choi, H.
    Kuenzel, M.
    Passerini, S.
    Appetecchi, G. B.
    JOURNAL OF POWER SOURCES, 2020, 479 (479)
  • [6] Sulfone-based electrolytes for high-voltage Li-ion batteries
    Abouimrane, A.
    Belharouak, I.
    Amine, K.
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (05) : 1073 - 1076
  • [7] Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries
    Tan, Shi
    Ji, Ya J.
    Zhang, Zhong R.
    Yang, Yong
    CHEMPHYSCHEM, 2014, 15 (10) : 1956 - 1969
  • [8] High-voltage polymer electrolytes: Challenges and progress
    Xiao, Shijun
    Ren, Longtao
    Liu, Wen
    Zhang, Lei
    Wang, Qian
    ENERGY STORAGE MATERIALS, 2023, 63
  • [9] Recent progress in ether-based electrolytes for high-voltage lithium metal batteries
    ZHU, Hai-peng
    ZHANG, Qiang-feng
    CHEN, Zhao
    PENG, Zi-yu
    MEI, Lin
    ZHANG, Chun-xiao
    WEI, Wei-feng
    Transactions of Nonferrous Metals Society of China (English Edition), 2024, 34 (11): : 3452 - 3470
  • [10] Stabilizing polymer electrolytes in high-voltage lithium batteries
    Choudhury, Snehashis
    Tu, Zhengyuan
    Nijamudheen, A.
    Zachman, Michael J.
    Stalin, Sanjuna
    Deng, Yue
    Zhao, Qing
    Vu, Duylinh
    Kourkoutis, Lena F.
    Mendoza-Cortes, Jose L.
    Archer, Lynden A.
    NATURE COMMUNICATIONS, 2019, 10 (1)