Nonclassicality Invariant of General Two-Mode Gaussian States

被引:32
作者
Arkhipov, Ievgen I. [1 ]
Perina, Jan, Jr. [1 ]
Svozilik, Jiri [1 ]
Miranowicz, Adam [2 ]
机构
[1] Palacky Univ, Joint Lab Opt, RCPTM, 17 Listopadu 12, Olomouc 77146, Czech Republic
[2] Acad Sci Czech Republ, Inst Phys, 17 Listopadu 12, Olomouc 77146, Czech Republic
关键词
SEPARABILITY CRITERION; QUANTUM; ENTANGLEMENT; LIGHT;
D O I
10.1038/srep26523
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a new quantity for describing nonclassicality of an arbitrary optical two-mode Gaussian state which remains invariant under any global photon-number preserving unitary transformation of the covariance matrix of the state. The invariant naturally splits into an entanglement monotone and local-nonclassicality quantifiers applied to the reduced states. This shows how entanglement can be converted into local squeezing and vice versa. Twin beams and their transformations at a beam splitter are analyzed as an example providing squeezed light. An extension of this approach to pure three-mode Gaussian states is given.
引用
收藏
页数:7
相关论文
共 48 条
[1]   Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence [J].
Adesso, G ;
Serafini, A ;
Illuminati, F .
PHYSICAL REVIEW A, 2006, 73 (03)
[2]   Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states [J].
Adesso, G ;
Illuminati, F .
PHYSICAL REVIEW A, 2005, 72 (03)
[3]  
Agarwal GS, 2013, QUANTUM OPTICS, P1
[4]   Characterizing the nonclassicality of mesoscopic optical twin-beam states [J].
Allevi, Alessia ;
Lamperti, Marco ;
Bondani, Maria ;
Perina, Jan, Jr. ;
Michalek, Vaclav ;
Haderka, Ondrej ;
Machulka, Radek .
PHYSICAL REVIEW A, 2013, 88 (06)
[5]  
[Anonymous], Quantum Statistics of Linear and Nonlinear Optical Phenomena
[6]   Comparative study of nonclassicality, entanglement, and dimensionality of multimode noisy twin beams [J].
Arkhipov, Ievgen I. ;
Perina, Jan ;
Perina, Jan .
PHYSICAL REVIEW A, 2015, 91 (03)
[7]   Computable measure of nonclassicality for light -: art. no. 173602 [J].
Asbóth, JK ;
Calsamiglia, J ;
Ritsch, H .
PHYSICAL REVIEW LETTERS, 2005, 94 (17)
[8]   Sudden vanishing and reappearance of nonclassical effects: General occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses [J].
Bartkowiak, Monika ;
Miranowicz, Adam ;
Wang, Xiaoguang ;
Liu, Yu-xi ;
Leonski, Wieslaw ;
Nori, Franco .
PHYSICAL REVIEW A, 2011, 83 (05)
[9]   Squeezing as an irreducible resource [J].
Braunstein, SL .
PHYSICAL REVIEW A, 2005, 71 (05)
[10]   Quantum error correction for communication with linear optics [J].
Braunstein, SL .
NATURE, 1998, 394 (6688) :47-49