Graphene oxide-enriched poly(ε-caprolactone) electrospun nanocomposite scaffold for bone tissue engineering applications

被引:70
|
作者
Mohammadi, Sepideh [1 ,2 ]
Shafiei, Seyedeh Sara [1 ]
Asadi-Eydivand, Mitra [3 ]
Ardeshir, Mahmoud [4 ]
Solati-Hashjin, Mehran [2 ]
机构
[1] Natl Inst Genet Engn & Biotechnol, Inst Med Biotechnol, Dept Stem Cell & Regenerat Med, Tehran 14965161, Iran
[2] Amirkabir Univ Technol, Dept Biomed Engn, Biomat Ctr Excellence, Tehran, Iran
[3] Univ Malaya, Dept Biomed Engn, Fac Engn, Kuala Lumpur, Malaysia
[4] Semnan Univ, Dept Mat Sci & Engn, Semnan, Iran
关键词
Graphene oxide; electrospinning; nanocomposite; tissue engineering; POLYCAPROLACTONE; NANOPARTICLES; NANOFIBERS; CHEMISTRY;
D O I
10.1177/0883911516668666
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Tissue engineering aims at fabricating biological substitutes to improve, repair, and regenerate failing human tissues or organs. Designing a nanocomposite scaffolds with tailored properties that enhance the development of functional tissue can be an appropriate approach to achieve this purpose. In this study, the uniform and bead-free nanofibers of poly(epsilon-caprolactone) composited with different graphene oxide nanosheet contents (ranging from 0.5 to 2wt%) were successfully fabricated through electrospinning process. A decrease in the average diameter of poly(epsilon-caprolactone) nanofibers was observed with the addition of graphene oxide nanosheets. Moreover, the nanocomposite scaffolds containing 2 wt% of graphene oxide nanosheets exhibited superior mechanical properties compared to that of pure poly(epsilon-caprolactone). Compared with pure poly(epsilon-caprolactone) scaffold, the degradation rate of poly(epsilon-caprolactone)-graphene oxide nanosheet nanofibers was enhanced, while the integrity of fibers was preserved. The presence of graphene oxide nanosheets in poly(epsilon-caprolactone) fibers promoted in vitro biomineralization, indicating bioactive features of the nanocomposite scaffolds. Compared to the pure one, nanocomposite fibers also showed better ability in protein adsorption. The in vitro cell culture studies showed that the addition of graphene oxide nanosheets did not diminish the biocompatibility of the electrospun poly(epsilon-caprolactone) nanofiber. Furthermore, the adhesion and proliferation of MG63 cells were increased. Altogether, the results demonstrated that electrospun poly(epsilon-caprolactone)-graphene oxide nanosheet nanofiber may be a suitable candidate for tissue engineering scaffold applications.
引用
收藏
页码:325 / 342
页数:18
相关论文
共 50 条
  • [31] Use of lecithin to control fiber morphology in electrospun poly (-caprolactone) scaffolds for improved tissue engineering applications
    Coverdale, Benjamin D. M.
    Gough, Julie E.
    Sampson, William W.
    Hoyland, Judith A.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (10) : 2865 - 2874
  • [32] Effects of nano-bioactive glass on structural, mechanical and bioactivity properties of Poly (3-hydroxybutyrate) electrospun scaffold for bone tissue engineering applications
    Iron, Razieh
    Mehdikhani, Mehdi
    Naghashzargar, Elham
    Karbasi, Saeed
    Semnani, Dariush
    MATERIALS TECHNOLOGY, 2019, 34 (09) : 540 - 548
  • [33] Synthesis and characterization of cellulose nanowhisker-reinforced-poly(ε-caprolactone) scaffold for tissue-engineering applications
    Khattab, Mohamed Mahmoud
    Dahman, Yaser
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (12)
  • [34] Ultra-thin electrospun nanocomposite scaffold of poly (3-hydroxybutyrate)-chitosan/magnetic mesoporous bioactive glasses for bone tissue engineering applications
    Toloue, Elahe Bahremandi
    Mohammadalipour, Mohammad
    Mukherjee, Shayanti
    Karbasi, Saeed
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 254
  • [35] Facile fabrication of poly(ε-caprolactone)/graphene oxide membranes for bioreactors in tissue engineering
    Diban, Nazely
    Sanchez-Gonzalez, Sandra
    Lazaro-Diez, Maria
    Ramos-Vivas, Jose
    Urtiagaa, Ane
    JOURNAL OF MEMBRANE SCIENCE, 2017, 540 : 219 - 228
  • [36] Biodegradable poly(ε-caprolactone) nanowires for bone tissue engineering applications
    Porter, Joshua R.
    Henson, Andrew
    Popat, Ketul C.
    BIOMATERIALS, 2009, 30 (05) : 780 - 788
  • [37] Electrospun Poly(ε-caprolactone)/Nanoclay Nanofibrous Mats for Tissue Engineering
    Nouri, Mahdi
    Mokhtari, Javad
    Rostamloo, Mahsa
    FIBERS AND POLYMERS, 2013, 14 (06) : 957 - 964
  • [38] Electrospun poly(ɛ-caprolactone)/nanoclay nanofibrous mats for tissue engineering
    Mahdi Nouri
    Javad Mokhtari
    Mahsa Rostamloo
    Fibers and Polymers, 2013, 14 : 957 - 964
  • [39] Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering
    Gautam, Sneh
    Sharma, Chhavi
    Purohit, Shiv Dutt
    Singh, Hemant
    Dinda, Amit Kumar
    Potdar, Pravin D.
    Chou, Chia-Fu
    Mishra, Narayan Chandra
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 119
  • [40] A Viscoelastic Study of Poly(ε-Caprolactone) Microsphere Sintered Bone Tissue Engineering Scaffold
    Shahin-Shamsabadi, Alireza
    Hashemi, Ata
    Tahriri, Mohammadreza
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2018, 38 (03) : 359 - 369