Graphene oxide-enriched poly(ε-caprolactone) electrospun nanocomposite scaffold for bone tissue engineering applications

被引:70
|
作者
Mohammadi, Sepideh [1 ,2 ]
Shafiei, Seyedeh Sara [1 ]
Asadi-Eydivand, Mitra [3 ]
Ardeshir, Mahmoud [4 ]
Solati-Hashjin, Mehran [2 ]
机构
[1] Natl Inst Genet Engn & Biotechnol, Inst Med Biotechnol, Dept Stem Cell & Regenerat Med, Tehran 14965161, Iran
[2] Amirkabir Univ Technol, Dept Biomed Engn, Biomat Ctr Excellence, Tehran, Iran
[3] Univ Malaya, Dept Biomed Engn, Fac Engn, Kuala Lumpur, Malaysia
[4] Semnan Univ, Dept Mat Sci & Engn, Semnan, Iran
关键词
Graphene oxide; electrospinning; nanocomposite; tissue engineering; POLYCAPROLACTONE; NANOPARTICLES; NANOFIBERS; CHEMISTRY;
D O I
10.1177/0883911516668666
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Tissue engineering aims at fabricating biological substitutes to improve, repair, and regenerate failing human tissues or organs. Designing a nanocomposite scaffolds with tailored properties that enhance the development of functional tissue can be an appropriate approach to achieve this purpose. In this study, the uniform and bead-free nanofibers of poly(epsilon-caprolactone) composited with different graphene oxide nanosheet contents (ranging from 0.5 to 2wt%) were successfully fabricated through electrospinning process. A decrease in the average diameter of poly(epsilon-caprolactone) nanofibers was observed with the addition of graphene oxide nanosheets. Moreover, the nanocomposite scaffolds containing 2 wt% of graphene oxide nanosheets exhibited superior mechanical properties compared to that of pure poly(epsilon-caprolactone). Compared with pure poly(epsilon-caprolactone) scaffold, the degradation rate of poly(epsilon-caprolactone)-graphene oxide nanosheet nanofibers was enhanced, while the integrity of fibers was preserved. The presence of graphene oxide nanosheets in poly(epsilon-caprolactone) fibers promoted in vitro biomineralization, indicating bioactive features of the nanocomposite scaffolds. Compared to the pure one, nanocomposite fibers also showed better ability in protein adsorption. The in vitro cell culture studies showed that the addition of graphene oxide nanosheets did not diminish the biocompatibility of the electrospun poly(epsilon-caprolactone) nanofiber. Furthermore, the adhesion and proliferation of MG63 cells were increased. Altogether, the results demonstrated that electrospun poly(epsilon-caprolactone)-graphene oxide nanosheet nanofiber may be a suitable candidate for tissue engineering scaffold applications.
引用
收藏
页码:325 / 342
页数:18
相关论文
共 50 条
  • [31] ZnO-incorporated polyvinylidene fluoride/poly(ε-caprolactone) nanocomposite scaffold with controlled release of dexamethasone for bone tissue engineering
    Faegheh FotouhiArdakani
    Mohammad Mohammadi
    Shohreh Mashayekhan
    Applied Physics A, 2022, 128
  • [32] Polyhydroxybutyrate-starch/carbon nanotube electrospun nanocomposite: A highly potential scaffold for bone tissue engineering applications
    Asl, Maryam Abdollahi
    Karbasi, Saeed
    Beigi-Boroujeni, Saeed
    Benisi, Soheila Zamanlui
    Saeed, Mahdi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 223 : 524 - 542
  • [33] Cellulose nanocrystal reinforced bioactive poly(ε-caprolactone) nanocomposite for bone tissue engineering
    Hong, Jung Ki
    Roman, Maren
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [34] Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold: Enhanced osteogenic properties for bone tissue engineering
    Aidun, Amir
    Firoozabady, Alireza Safaei
    Moharrami, Mohammad
    Ahmadi, Ali
    Haghighipour, Nooshin
    Bonakdar, Shahin
    Faghihi, Shahab
    ARTIFICIAL ORGANS, 2019, 43 (10) : E264 - E281
  • [35] Hierarchically decorated electrospun poly(ε-caprolactone)/nanohydroxyapatite composite nanofibers for bone tissue engineering
    Jing, Xin
    Jin, Elizabeth
    Mi, Hao-Yang
    Li, Wan-Ju
    Peng, Xiang-Fang
    Turng, Lih-Sheng
    JOURNAL OF MATERIALS SCIENCE, 2015, 50 (12) : 4174 - 4186
  • [36] Biomimetic calcium phosphate coating on electrospun poly (ε-caprolactone) scaffolds for bone tissue engineering
    Yang, F.
    Wolke, J. G. C.
    Jansen, J. A.
    CHEMICAL ENGINEERING JOURNAL, 2008, 137 (01) : 154 - 161
  • [37] Bioactivity Assessment of Poly(ε-caprolactone)/Hydroxyapatite Electrospun Fibers for Bone Tissue Engineering Application
    Hassan, Mohd Izzat
    Sultana, Naznin
    Hamdan, Salehhuddin
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [38] Applications of Poly(caprolactone)-Based Nanofibre Electrospun Scaffolds in Tissue Engineering and Regenerative Medicine
    Zhang, Wei
    Weng, Tingting
    Li, Qiong
    Jin, Ronghua
    You, Chuangang
    Wu, Pan
    Shao, Jiaming
    Xia, Sizhan
    Yang, Min
    Han, Chunmao
    Wang, Xingang
    CURRENT STEM CELL RESEARCH & THERAPY, 2021, 16 (04) : 414 - 442
  • [39] Effect of cellulose nanofibers on polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications
    Mohammadalipour, Mohammad
    Karbasi, Saeed
    Behzad, Tayebeh
    Mohammadalipour, Zahra
    Zamani, Maryam
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 220 : 1402 - 1414
  • [40] Ultra-thin electrospun nanocomposite scaffold of poly (3-hydroxybutyrate)-chitosan/magnetic mesoporous bioactive glasses for bone tissue engineering applications
    Toloue, Elahe Bahremandi
    Mohammadalipour, Mohammad
    Mukherjee, Shayanti
    Karbasi, Saeed
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 254