Graphene oxide-enriched poly(ε-caprolactone) electrospun nanocomposite scaffold for bone tissue engineering applications

被引:70
|
作者
Mohammadi, Sepideh [1 ,2 ]
Shafiei, Seyedeh Sara [1 ]
Asadi-Eydivand, Mitra [3 ]
Ardeshir, Mahmoud [4 ]
Solati-Hashjin, Mehran [2 ]
机构
[1] Natl Inst Genet Engn & Biotechnol, Inst Med Biotechnol, Dept Stem Cell & Regenerat Med, Tehran 14965161, Iran
[2] Amirkabir Univ Technol, Dept Biomed Engn, Biomat Ctr Excellence, Tehran, Iran
[3] Univ Malaya, Dept Biomed Engn, Fac Engn, Kuala Lumpur, Malaysia
[4] Semnan Univ, Dept Mat Sci & Engn, Semnan, Iran
关键词
Graphene oxide; electrospinning; nanocomposite; tissue engineering; POLYCAPROLACTONE; NANOPARTICLES; NANOFIBERS; CHEMISTRY;
D O I
10.1177/0883911516668666
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Tissue engineering aims at fabricating biological substitutes to improve, repair, and regenerate failing human tissues or organs. Designing a nanocomposite scaffolds with tailored properties that enhance the development of functional tissue can be an appropriate approach to achieve this purpose. In this study, the uniform and bead-free nanofibers of poly(epsilon-caprolactone) composited with different graphene oxide nanosheet contents (ranging from 0.5 to 2wt%) were successfully fabricated through electrospinning process. A decrease in the average diameter of poly(epsilon-caprolactone) nanofibers was observed with the addition of graphene oxide nanosheets. Moreover, the nanocomposite scaffolds containing 2 wt% of graphene oxide nanosheets exhibited superior mechanical properties compared to that of pure poly(epsilon-caprolactone). Compared with pure poly(epsilon-caprolactone) scaffold, the degradation rate of poly(epsilon-caprolactone)-graphene oxide nanosheet nanofibers was enhanced, while the integrity of fibers was preserved. The presence of graphene oxide nanosheets in poly(epsilon-caprolactone) fibers promoted in vitro biomineralization, indicating bioactive features of the nanocomposite scaffolds. Compared to the pure one, nanocomposite fibers also showed better ability in protein adsorption. The in vitro cell culture studies showed that the addition of graphene oxide nanosheets did not diminish the biocompatibility of the electrospun poly(epsilon-caprolactone) nanofiber. Furthermore, the adhesion and proliferation of MG63 cells were increased. Altogether, the results demonstrated that electrospun poly(epsilon-caprolactone)-graphene oxide nanosheet nanofiber may be a suitable candidate for tissue engineering scaffold applications.
引用
收藏
页码:325 / 342
页数:18
相关论文
共 50 条
  • [21] Polyhydroxybutyrate-starch/carbon nanotube electrospun nanocomposite: A highly potential scaffold for bone tissue engineering applications
    Asl, Maryam Abdollahi
    Karbasi, Saeed
    Beigi-Boroujeni, Saeed
    Benisi, Soheila Zamanlui
    Saeed, Mahdi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 223 : 524 - 542
  • [22] Poly(ε-caprolactone) Nanocomposite Scaffolds for Tissue Engineering: A Brief Overview
    Mkhabela, Vuyiswa J.
    Ray, Suprakas Sinha
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (01) : 535 - 545
  • [23] Biomimetic calcium phosphate coating on electrospun poly (ε-caprolactone) scaffolds for bone tissue engineering
    Yang, F.
    Wolke, J. G. C.
    Jansen, J. A.
    CHEMICAL ENGINEERING JOURNAL, 2008, 137 (01) : 154 - 161
  • [24] Advances in Electrospun Poly(ε-caprolactone)-Based Nanofibrous Scaffolds for Tissue Engineering
    Robles, Karla N.
    Zahra, Fatima tuz
    Mu, Richard
    Giorgio, Todd
    POLYMERS, 2024, 16 (20)
  • [25] Bioactive glass/hydroxyapatite- containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering
    Deliormanli, Aylin M.
    Konyali, Rabia
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2019, 55 (01) : 247 - 256
  • [26] Bioactive glass/hydroxyapatite- containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering
    Aylin M. Deliormanlı
    Rabia Konyalı
    Journal of the Australian Ceramic Society, 2019, 55 : 247 - 256
  • [27] Electrospun poly-caprolactone/graphene oxide/quercetin nanofibrous scaffold for wound dressing: Evaluation of biological and structural properties
    Faraji, Soraya
    Nowroozi, Nona
    Nouralishahi, Amideddin
    Shayeh, Javad Shabani
    LIFE SCIENCES, 2020, 257
  • [28] Fabrication of a poly(-caprolactone)/starch nanocomposite scaffold with a solvent-casting/salt-leaching technique for bone tissue engineering applications
    Taherkhani, Safa
    Moztarzadeh, Fathollah
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (23)
  • [29] Fabrication and characterization of PHEMA-gelatin scaffold enriched with graphene oxide for bone tissue engineering
    Tabatabaee, Sara
    Baheiraei, Nafiseh
    Salehnia, Mojdeh
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2022, 17 (01)
  • [30] Applications of Poly(caprolactone)-Based Nanofibre Electrospun Scaffolds in Tissue Engineering and Regenerative Medicine
    Zhang, Wei
    Weng, Tingting
    Li, Qiong
    Jin, Ronghua
    You, Chuangang
    Wu, Pan
    Shao, Jiaming
    Xia, Sizhan
    Yang, Min
    Han, Chunmao
    Wang, Xingang
    CURRENT STEM CELL RESEARCH & THERAPY, 2021, 16 (04) : 414 - 442