Reconfigurable Intelligent Surface-assisted Classification of Modulations using Deep Learning

被引:0
|
作者
Lodro, Mir [1 ]
Taghvaee, Hamidreza [1 ]
Gros, Jean-Baptiste [2 ]
Greedy, Steve [1 ]
Lerosey, Geofrroy [2 ]
Gradoni, Gabriele [1 ,3 ]
机构
[1] Univ Nottingham, George Green Inst Electromagnet Res GGIEMR, Nottingham, England
[2] Greenerwave, Paris, France
[3] Univ Cambridge, Maxwell Ctr, Cavendish Lab, Cambridge, England
来源
2022 3RD URSI ATLANTIC AND ASIA PACIFIC RADIO SCIENCE MEETING (AT-AP-RASC) | 2022年
基金
欧盟地平线“2020”; “创新英国”项目;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The fifth generating (5G) of wireless networks will be more adaptive and heterogeneous. Reconfigurable intelligent surface technology enables the 5G to work on multistrand waveforms. However, in such a dynamic network, the identification of specific modulation types is of paramount importance. We present a RIS-assisted digital classification method based on artificial intelligence. We train a convolutional neural network to classify digital modulations. The proposed method operates and learns features directly on the received signal without feature extraction. The features learned by the convolutional neural network are presented and analyzed. Furthermore, the robust features of the received signals at a specific SNR range are studied. The accuracy of the proposed classification method is found to be remarkable, particularly for low levels of SNR.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Deep Learning for Secure Transmission in Reconfigurable Intelligent Surface-Assisted Communications
    Fang J.
    Zou X.
    Huang C.
    Yang Z.
    Xu Y.
    Chen X.
    Shi J.
    Shikh-Bahaei M.
    Journal of Communications and Information Networks, 2023, 8 (02) : 122 - 132
  • [2] Deep Learning-Based Optimization for Reconfigurable Intelligent Surface-Assisted Communications
    Lopez-Lanuza, Guillermo
    Kun Chen-Hu
    Garcia Armada, Ana
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 764 - 769
  • [3] RECONFIGURABLE INTELLIGENT SURFACE-ASSISTED AERIAL NONTERRESTRIAL NETWORKS An Intelligent Synergy With Deep Reinforcement Learning
    Umer, Muhammad
    Mohsin, Muhammad Ahmed
    Kaushik, Aryan
    Nadeem, Qurrat-Ul-Ain
    Nasir, Ali Arshad
    Hassan, Syed Ali
    IEEE VEHICULAR TECHNOLOGY MAGAZINE, 2025,
  • [4] Aerial Reconfigurable Intelligent Surface-Assisted Secrecy: A Learning Approach
    Jiang, Tianqi
    Niu, Lirong
    Tang, Xu
    Tang, Xiao
    Zhai, Daosen
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (01) : 18 - 22
  • [5] Reconfigurable Intelligent Surface-Assisted Wireless Federated Learning With Imperfect Aggregation
    Sun, Pengcheng
    Liu, Erwu
    Ni, Wei
    Wang, Rui
    Xing, Zhe
    Li, Bofeng
    Jamalipour, Abbas
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (02) : 1058 - 1071
  • [6] Reconfigurable Intelligent Surface-Assisted Spatial Scattering Modulation
    Zhu, Xusheng
    Yuan, Lei
    Kim, Kyeong Jin
    Li, Qingqing
    Zhang, Jiliang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (01) : 192 - 196
  • [7] Convergence Analysis and Energy Minimization for Reconfigurable Intelligent Surface-Assisted Federated Learning
    Zhang, Siyu
    Yang, Zheng
    Chen, Gaojie
    Dong, Zhicheng
    Han, Zhu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (11) : 17384 - 17398
  • [8] Reconfigurable Intelligent Surface-Assisted Passive Beamforming Attack
    Niu, Hong
    Xiao, Yue
    Lei, Xia
    Dan, Lilin
    Xiang, Wei
    Yuen, Chau
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 8236 - 8247
  • [9] Aerial Reconfigurable Intelligent Surface-Assisted Terrestrial Communications
    Gu X.
    Duan W.
    Zhang G.
    Wen M.
    Choi J.
    Ho P.-H.
    IEEE Internet of Things Magazine, 2024, 7 (02): : 54 - 60
  • [10] Reconfigurable Intelligent Surface-Assisted Space Shift Keying
    Canbilen, Ayse E.
    Basar, Ertugrul
    Ikki, Salama S.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (09) : 1495 - 1499