Large, non-saturating magnetoresistance in single layer chemical vapor deposition graphene with an h-BN capping layer

被引:13
作者
Chuang, Chiashain [1 ,2 ]
Liang, C. -T. [3 ]
Kim, Gil-Ho [4 ]
Elmquist, R. E. [5 ]
Yang, Y. [5 ]
Hsieh, Y. P. [2 ]
Patel, Dinesh K. [3 ]
Watanabe, K. [6 ]
Taniguchi, T. [6 ]
Aoki, N. [1 ]
机构
[1] Chiba Univ, Grad Sch Engn, Chiba 2638522, Japan
[2] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[4] Sungkyunkwan Univ, Sch Elect & Elect Engn, Suwon 16419, South Korea
[5] NIST, Gaithersburg, MD 20899 USA
[6] Natl Inst Mat Sci, Adv Mat Lab, 1-1 Namki, Tsukuba, Ibaraki 3050044, Japan
基金
日本学术振兴会;
关键词
MAGNETIC-FIELD SENSORS; LINEAR MAGNETORESISTANCE; DEVICES;
D O I
10.1016/j.carbon.2018.04.067
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report large, non-saturating magnetoresistance (MR) of similar to 140% in single layer chemical vapor deposition (CVD) graphene with an h-BN capping layer at room temperature at B = 9T. Based on the classical model developed by Parish and Littlewood, our results show that the MR is proportional to the average mobility < mu > and decreases with increasing temperature. In contrast, in a large-area, extremely homogenous single layer epitaxial graphene (EG) device, the MR is saturating and is inversely proportional to < mu >, which is consistent with the finite resistance network picture. By comparing the results obtained from CVD graphene with an h-BN capping layer with those from the EG device, we show that the non-saturating linear characteristics come from multi-channel current paths in a two-dimensional plane due to the intrinsic grain boundaries and domains of CVD graphene by capping an h-BN layer that increase the < mu > of CVD graphene. Our results on CVD graphene with an h-BN capping layer pave the way for industrial schemes of graphene-based and air-stable magnetic field sensors with a linear, large response at room temperature. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 28 条
[1]   Quantum magnetoresistance [J].
Abrikosov, AA .
PHYSICAL REVIEW B, 1998, 58 (05) :2788-2794
[2]  
[Anonymous], 2014, 2D MAT
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]   Hot Electron Cooling by Acoustic Phonons in Graphene [J].
Betz, A. C. ;
Vialla, F. ;
Brunel, D. ;
Voisin, C. ;
Picher, M. ;
Cavanna, A. ;
Madouri, A. ;
Feve, G. ;
Berroir, J. -M. ;
Placais, B. ;
Pallecchi, E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[5]   Layer-by-layer assembly of vertically conducting graphene devices [J].
Chen, Jing-Jing ;
Meng, Jie ;
Zhou, Yang-Bo ;
Wu, Han-Chun ;
Bie, Ya-Qing ;
Liao, Zhi-Min ;
Yu, Da-Peng .
NATURE COMMUNICATIONS, 2013, 4
[6]   Chemical-doping-driven crossover from graphene to "ordinary metal" in epitaxial graphene grown on SiC [J].
Chuang, Chiashain ;
Yang, Yanfei ;
Pookpanratana, Sujitra ;
Hacker, Christina A. ;
Liang, Chi-Te ;
Elmquist, Randolph E. .
NANOSCALE, 2017, 9 (32) :11537-11544
[7]   Linear magnetoresistance in monolayer epitaxial graphene grown on SiC [J].
Chuang, Chiashain ;
Yang, Yanfei ;
Elmquist, Randolph E. ;
Liang, Chi-Te .
MATERIALS LETTERS, 2016, 174 :118-121
[8]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[9]   Extraordinary magnetoresistance in shunted chemical vapor deposition grown graphene devices [J].
Friedman, Adam L. ;
Robinson, Jeremy T. ;
Perkins, F. Keith ;
Campbell, Paul M. .
APPLIED PHYSICS LETTERS, 2011, 99 (02)
[10]   Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures [J].
Gopinadhan, Kalon ;
Shin, Young Jun ;
Jalil, Rashid ;
Venkatesan, Thirumalai ;
Geim, Andre K. ;
Neto, Antonio H. Castro ;
Yang, Hyunsoo .
NATURE COMMUNICATIONS, 2015, 6