Multi-scale modeling of solidification and microstructure development in laser keyhole welding process for austenitic stainless steel

被引:106
作者
Tan, Wenda [1 ]
Shin, Yung C. [1 ]
机构
[1] Purdue Univ, Ctr Laser Based Mfg, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Laser keyhole welding; Solidification; Grain distribution; Dendrite morphology; PHASE-FIELD SIMULATION; DENDRITE GROWTH; GRAIN STRUCTURES; RECOIL PRESSURE; MULTICOMPONENT; VAPORIZATION; PREDICTION; EVOLUTION; DYNAMICS; POOL;
D O I
10.1016/j.commatsci.2014.10.063
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Amulti-scale model is developed in this paper to investigate the growth of grains and sub-grain dendrites during the molten pool solidification of austenitic stainless steel AISI304 in laser keyhole welding processes. A macro-scale dynamic model is used to predict the fluid flow and heat transfer in the keyhole as well as the molten pool. The generated thermal history is fed to a three-dimensional Cellular Automata model to predict the meso-scale grain growth and to a two-dimensional Cellular Automata-Phase Field model to predict the micro-scale dendrite morphology. The multi-scale model is applied to simulate multiple cases of different welding parameters. The model predictions are validated against experiments and studied further for detailed information. The effects of the welding parameters are discussed based on the numerical and experimental results. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:446 / 458
页数:13
相关论文
共 48 条
[1]   Modelling of gas jet effect on the melt pool movements during deep penetration laser welding [J].
Amara, E. H. ;
Fabbro, R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (05)
[2]  
Böttger B, 2008, STEEL RES INT, V79, P608, DOI [10.2374/SRI08SP021-79-2008-608, 10.2374/SRI08SP021]
[3]   Solidification microstructure evolution model for laser cladding process [J].
Cao, Y. ;
Choi, J. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (07) :852-863
[4]   3D Coupled Cellular Automaton (CA)-Finite Element (FE) Modeling for Solidification Grain Structures in Gas Tungsten Arc Welding (GTAW) [J].
Chen, Shijia ;
Guillemot, Gildas ;
Gandin, Charles-Andre .
ISIJ INTERNATIONAL, 2014, 54 (02) :401-407
[5]   A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding [J].
Courtois, Mickael ;
Carin, Muriel ;
Le Masson, Philippe ;
Gaied, Sadok ;
Balabane, Mikhael .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (50)
[6]   Welding: Solidification and microstructure [J].
David, SA ;
Babu, SS ;
Vitek, JM .
JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2003, 55 (06) :14-20
[7]   PHYSICAL PROCESSES IN FUSION-WELDING [J].
DEBROY, T ;
DAVID, SA .
REVIEWS OF MODERN PHYSICS, 1995, 67 (01) :85-112
[8]   Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys [J].
Fallah, V. ;
Amoorezaei, M. ;
Provatas, N. ;
Corbin, S. F. ;
Khajepour, A. .
ACTA MATERIALIA, 2012, 60 (04) :1633-1646
[9]   Alloying element vaporization during laser spot welding of stainless steel [J].
He, X ;
DebRoy, T ;
Fuerschbach, PW .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (23) :3079-3088
[10]   A MODEL OF DEEP PENETRATION LASER-WELDING BASED ON CALCULATION OF THE KEYHOLE PROFILE [J].
KAPLAN, A .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1994, 27 (09) :1805-1814