Stability and Convergence of Modified Du Fort-Frankel Schemes for Solving Time-Fractional Subdiffusion Equations

被引:27
作者
Liao, Hong-lin [1 ]
Zhang, Ya-nan [2 ]
Zhao, Ying [1 ]
Shi, Han-sheng [1 ]
机构
[1] PLA Univ Sci & Technol, Inst Sci, Nanjing 211101, Jiangsu, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Time-fractional subdiffusion equations; Modified Riemann-Liouville derivative; Du Fort-Frankel-type scheme; Discrete energy method; Stability and convergence; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE METHOD; VARIABLE-ORDER; DIFFUSION EQUATION; CALCULUS; ACCURACY;
D O I
10.1007/s10915-014-9841-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of modified Du Fort-Frankel-type schemes is investigated for fractional subdiffusion equations in the Jumarie's modified Riemann-Liouville form with constant, variable or distributed fractional order. New explicit difference methods are constructed by combining the approximation of the modified fractional derivative with the idea of Du Fort-Frankel scheme, well-known for ordinary diffusion equations. Unconditional stability of the explicit methods is established in the sense of a discrete energy norm. The proposed schemes are shown to be convergent under the time-step (consistency) restriction of the classical Du Fort-Frankel scheme. Numerical examples are included to support our theoretical results.
引用
收藏
页码:629 / 648
页数:20
相关论文
共 43 条
[1]  
[Anonymous], P 15 C COMP METH MEC
[2]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[3]  
[Anonymous], 1974, MATH SCI ENG
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]  
Bagley R., 2000, INT J APPL MATH, V2, P965
[6]   Numerical simulations of 2D fractional subdiffusion problems [J].
Brunner, Hermann ;
Ling, Leevan ;
Yamamoto, Masahiro .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (18) :6613-6622
[7]  
Caputo M., 1995, Ann. Univ. Ferrara., V41, P73, DOI 10.1007/BF02826009
[8]  
Caputo M, 2001, Fract Calc Appl Anal, V4, P421
[9]   Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
PHYSICAL REVIEW E, 2002, 66 (04) :7-046129
[10]  
Chen CM, 2012, MATH COMPUT, V81, P345, DOI 10.1090/S0025-5718-2011-02447-6