In silico design of microporous polymers for chemical and

被引:8
作者
Anstine, Dylan M. [1 ,2 ]
Sholl, David S. [3 ,4 ]
Siepmann, Joern Ilja [5 ,6 ]
Snurr, Randall Q. [7 ]
Aspuru-Guzik, Alan [8 ,9 ,10 ,11 ]
Colina, Coray M. [1 ,2 ,12 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Florida, George & Josephine Butler Polymer Res Lab, Gainesville, FL 32611 USA
[3] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[4] Oak Ridge Natl Lab, Oak Ridge, TN USA
[5] Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA
[6] Univ Minnesota, Chem Theory Ctr, Minneapolis, MN USA
[7] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL USA
[8] Univ Toronto, Dept Chem, Toronto, ON, Canada
[9] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[10] Vector Inst Artificial Intelligence, Toronto, ON, Canada
[11] Canadian Inst Adv Res, Toronto, ON, Canada
[12] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
关键词
INTRINSIC MICROPOROSITY; SEPARATIONS; POLYIMIDES; SIMULATION; MEMBRANES; PACKING; PIM-1;
D O I
10.1016/j.coche.2022.100795
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Polymers of intrinsic microporosity (PIMs) are a family of materials with potential to be effective and scalable solutions for challenging adsorbent and membrane applications. The broad range of repeat unit chemistry, microporous structural features, and polymer processing makes exploration of the expansive PIM design space inefficient via chemical and materials intuition alone. Computational techniques such as molecular simulations and machine learning can provide a leap in capabilities to address this polymer design challenge and will be central to the future development of PIMs. We highlight recent microporous material studies that arrived at key results by employing computational techniques and provide our perspective on the prospects for in silico design and development of PIMs.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Molecular analysis of selective gas adsorption within composites of ionic polyimides and ionic liquids as gas separation membranes [J].
Abedini, Asghar ;
Crabtree, Ellis ;
Bara, Jason E. ;
Turner, C. Heath .
CHEMICAL PHYSICS, 2019, 516 :71-83
[2]  
Anstine DM, 2021, NPJ COMPUT MATER, V7, DOI 10.1038/s41524-021-00522-8
[3]   Sorption-inducedpolymer rearrangement: approaches from molecular modeling [J].
Anstine, Dylan M. ;
Colina, Coray M. .
POLYMER INTERNATIONAL, 2021, 70 (07) :984-989
[4]   SulfonylPIM-1: A diverse separation membrane with dilation resistance [J].
Anstine, Dylan M. ;
Mendez, Nicholas F. ;
Colina, Coray M. .
AICHE JOURNAL, 2021, 67 (03)
[5]   Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling [J].
Bai, Peng ;
Jeon, Mi Young ;
Ren, Limin ;
Knight, Chris ;
Deem, Michael W. ;
Tsapatsis, Michael ;
Siepmann, J. Ilja .
NATURE COMMUNICATIONS, 2015, 6
[6]   Designing exceptional gas-separation polymer membranes using machine learning [J].
Barnett, J. Wesley ;
Bilchak, Connor R. ;
Wang, Yiwen ;
Benicewicz, Brian C. ;
Murdock, Laura A. ;
Bereau, Tristan ;
Kumar, Sanat K. .
SCIENCE ADVANCES, 2020, 6 (20)
[7]   Energy-based descriptors to rapidly predict hydrogen storage in metal-organic frameworks [J].
Bucior, Benjamin J. ;
Bobbitt, N. Scott ;
Islamoglu, Timur ;
Goswami, Subhadip ;
Gopalan, Arun ;
Yildirim, Taner ;
Farha, Omar K. ;
Bagheri, Neda ;
Snurr, Randall Q. .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (01) :162-174
[8]   A Collection of More than 900 Gas Mixture Adsorption Experiments in Porous Materials from Literature Meta-Analysis [J].
Cai, Xuqing ;
Gharagheizi, Farhad ;
Bingel, Lukas W. ;
Shade, Danny ;
Walton, Krista S. ;
Sholl, David S. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (01) :639-651
[9]   Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal-Organic Framework Database: CoRE MOF 2019 [J].
Chung, Yongchul G. ;
Haldoupis, Emmanuel ;
Bucior, Benjamin J. ;
Haranczyk, Maciej ;
Lee, Seulchan ;
Zhang, Hongda ;
Vogiatzis, Konstantinos D. ;
Milisavljevic, Marija ;
Ling, Sanliang ;
Camp, Jeffrey S. ;
Slater, Ben ;
Siepmann, J. Ilja ;
Sholl, David S. ;
Snurr, Randall Q. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2019, 64 (12) :5985-5998
[10]   Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity [J].
Comesana-Gandara, Bibiana ;
Chen, Jie ;
Bezzu, C. Grazia ;
Carta, Mariolino ;
Rose, Ian ;
Ferrari, Maria-Chiara ;
Esposito, Elisa ;
Fuoco, Alessio ;
Jansen, Johannes C. ;
McKeown, Neil B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (09) :2733-2740