CONVOLUTION INEQUALITIES IN WEIGHTED LORENTZ SPACES: CASE 0 < q < 1

被引:0
作者
Krepela, Martin [1 ,2 ]
机构
[1] Karlstad Univ, Fac Hlth Sci & Technol, Dept Math & Comp Sci, S-65188 Karlstad, Sweden
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2017年 / 20卷 / 01期
关键词
Convolution; Young inequality; Lorentz spaces; weights; OPERATORS; EMBEDDINGS;
D O I
10.7153/mia-20-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a fixed nonnegative radially decreasing kernel g. In this paper, boundedness of the convolution operator T(g)f := f*g between the weighted Lorentz spaces Gamma(q)(w) and Lambda(p)(v) is characterized in the case 0 < q < 1. The conditions are sufficient if the kernel g is just a general measurable function. Furthermore, the largest rearrangement-invariant (quasi-)space Y is found such that the Young-type inequality parallel to f*g parallel to(Gamma q(w)) <= C parallel to f parallel to (Lambda p(v))parallel to g parallel to Y holds for all f is an element of Lambda(p)(v) and g is an element of Y.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 16 条
[1]   WEIGHTED INEQUALITIES FOR CONVOLUTIONS [J].
ANDERSEN, KF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) :1129-1136
[2]  
Bennett C., 1988, Pure and Applied Mathematics, V129
[3]   CONVOLUTION OF L(P,Q) FUNCTIONS [J].
BLOZINSKI, AP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 32 (01) :237-+
[4]   On embeddings between classical Lorentz spaces [J].
Carro, M ;
Pick, L ;
Soria, J ;
Stepanov, VD .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (03) :397-428
[5]  
Carro M, 2008, J OPERAT THEOR, V59, P309
[6]   Are generalized Lorentz "spaces" really spaces? [J].
Cwikel, M ;
Kaminska, A ;
Maligranda, L ;
Pick, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) :3615-3625
[7]   Reduction theorems for operators on the cones of monotone functions [J].
Gogatishvili, Amiran ;
Stepanov, Vladimir D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (01) :156-172
[8]  
Hunt R., 1966, ENSEIGN MATH, V12, P249
[9]   Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality [J].
Kozono, Hideo ;
Sato, Tokushi ;
Wadade, Hidemitsu .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (06) :1951-1974
[10]   Convolution in Rearrangement-Invariant Spaces Defined in Terms of Oscillation and the Maximal Function [J].
Krepela, Martin .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (04) :369-383