Preparing local strain patterns in graphene by atomic force microscope based indentation

被引:27
作者
Nemes-Incze, Peter [1 ]
Kukucska, Gergo [2 ]
Koltai, Janos [2 ]
Kurti, Jeno [2 ]
Hwang, Chanyong [3 ]
Tapaszto, Levente [1 ]
Biro, Laszlo P. [4 ]
机构
[1] Ctr Energy Res, Inst Tech Phys & Mat Sci, Nanotechnol Dept, NanoFab ERC Res Grp 2D, POB 49, H-1525 Budapest, Hungary
[2] Eotvos Univ ELTE, Dept Biol Phys, Pazmany Peter Setany 1, H-1117 Budapest, Hungary
[3] Korea Res Inst Stand & Sci, Ctr Nanometrol, Daejeon 305340, South Korea
[4] Ctr Energy Res, Inst Tech Phys & Mat Sci, Nanotechnol Dept, POB 49, H-1525 Budapest, Hungary
基金
新加坡国家研究基金会;
关键词
D O I
10.1038/s41598-017-03332-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patterning graphene into various mesoscopic devices such as nanoribbons, quantum dots, etc. by lithographic techniques has enabled the guiding and manipulation of graphene's Dirac-type charge carriers. Graphene, with well-defined strain patterns, holds promise of similarly rich physics while avoiding the problems created by the hard to control edge configuration of lithographically prepared devices. To engineer the properties of graphene via mechanical deformation, versatile new techniques are needed to pattern strain profiles in a controlled manner. Here we present a process by which strain can be created in substrate supported graphene layers. Our atomic force microscope-based technique opens up new possibilities in tailoring the properties of graphene using mechanical strain.
引用
收藏
页数:7
相关论文
共 48 条
[31]   Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation [J].
Mohiuddin, T. M. G. ;
Lombardo, A. ;
Nair, R. R. ;
Bonetti, A. ;
Savini, G. ;
Jalil, R. ;
Bonini, N. ;
Basko, D. M. ;
Galiotis, C. ;
Marzari, N. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 79 (20)
[32]   Strong suppression of weak localization in graphene [J].
Morozov, S. V. ;
Novoselov, K. S. ;
Katsnelson, M. I. ;
Schedin, F. ;
Ponomarenko, L. A. ;
Jiang, D. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (01)
[33]   Nanoengineered nonuniform strain in graphene using nanopillars [J].
Neek-Amal, M. ;
Covaci, L. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2012, 86 (04)
[34]   Tight-binding approach to uniaxial strain in graphene [J].
Pereira, Vitor M. ;
Castro Neto, A. H. ;
Peres, N. M. R. .
PHYSICAL REVIEW B, 2009, 80 (04)
[35]   Strain Superlattices and Macroscale Suspension of Graphene Induced by Corrugated Substrates [J].
Reserbat-Plantey, Antoine ;
Kalita, Dipankar ;
Han, Zheng ;
Ferlazzo, Laurence ;
Autier-Laurent, Sandrine ;
Komatsu, Katsuyoshi ;
Li, Chuan ;
Weil, Raphael ;
Ralko, Arnaud ;
Marty, Laetitia ;
Gueron, Sophie ;
Bendiab, Nedjma ;
Bouchiat, Helene ;
Bouchiat, Vincent .
NANO LETTERS, 2014, 14 (09) :5044-5051
[36]   Local sublattice symmetry breaking for graphene with a centrosymmetric deformation [J].
Schneider, M. ;
Faria, D. ;
Kusminskiy, S. Viola ;
Sandler, N. .
PHYSICAL REVIEW B, 2015, 91 (16)
[37]   Tunable graphene single electron transistor [J].
Stampfer, C. ;
Schurtenberger, E. ;
Molitor, F. ;
Guettinger, J. ;
Ihn, T. ;
Ensslin, K. .
NANO LETTERS, 2008, 8 (08) :2378-2383
[38]   Current flow paths in deformed graphene: from quantum transport to classical trajectories in curved space [J].
Stegmann, Thomas ;
Szpak, Nikodem .
NEW JOURNAL OF PHYSICS, 2016, 18
[39]   Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy [J].
Summerfield, Alex ;
Davies, Andrew ;
Cheng, Tin S. ;
Korolkov, Vladimir V. ;
Cho, YongJin ;
Mellor, Christopher J. ;
Foxon, C. Thomas ;
Khlobystov, Andrei N. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Eaves, Laurence ;
Novikov, Sergei V. ;
Beton, Peter H. .
SCIENTIFIC REPORTS, 2016, 6
[40]  
Tapasztó L, 2012, NAT PHYS, V8, P739, DOI [10.1038/NPHYS2389, 10.1038/nphys2389]