A GENERAL THEORY FOR ORTHOGONAL ARRAY BASED LATIN HYPERCUBE SAMPLING
被引:21
作者:
Ai, Mingyao
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Ai, Mingyao
[1
,2
]
Kong, Xiangshun
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Kong, Xiangshun
[1
,2
]
Li, Kang
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Li, Kang
[1
,2
]
机构:
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
Orthogonal array based Latin hypercube sampling (LHS) is popularly adopted for computer experiments. Because of its stratification on multivariate margins in addition to univariate uniformity, the associated samples may provide better estimators for the gross mean of a complex function on a domain. In this paper, for some LHS methods based on an orthogonal array of strength t, a unified expression of the variance of the sample mean is developed by introducing a new discrete function. An approximate estimator for the variance of the sample mean is also established that is helpful in obtaining the confidence interval of the gross mean. We extend these statistical properties to three types of LHS: strong orthogonal array-based LHS, nested orthogonal array-based LHS, and correlation-controlled orthogonal array-based LHS. Some simulations are given to verify our results.
机构:
Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Ai, Mingyao
;
Jiang, Bochuan
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Jiang, Bochuan
;
Li, Kang
论文数: 0引用数: 0
h-index: 0
机构:
Sci & Technol Complex Land Syst Simulat Lab, Beijing 100012, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
机构:
Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Ai, Mingyao
;
Jiang, Bochuan
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Jiang, Bochuan
;
Li, Kang
论文数: 0引用数: 0
h-index: 0
机构:
Sci & Technol Complex Land Syst Simulat Lab, Beijing 100012, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China