Hyperspectral Band Selection Using Improved Firefly Algorithm

被引:90
作者
Su, Hongjun [1 ,2 ]
Yong, Bin [1 ,2 ]
Du, Qian [3 ,4 ]
机构
[1] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
[2] Hohai Univ, Sch Earth Sci & Engn, Nanjing 210098, Jiangsu, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
[4] Mississippi State Univ, Geosyst Res Inst High Performance Comp Collaborat, Mississippi State, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Band selection; dimensionality reduction (DR); firefly algorithm (FA); hyperspectral imagery;
D O I
10.1109/LGRS.2015.2497085
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An improved firefly algorithm (FA)-based band selection method is proposed for hyperspectral dimensionality reduction (DR). In this letter, DR is formulated as an optimization problem that searches a small number of bands from a hyperspectral data set, and a feature subset search algorithm using the FA is developed. To avoid employing an actual classifier within the band searching process to greatly reduce computational cost, criterion functions that can gauge class separability are preferred; specifically, the minimum estimated abundance covariance and Jeffreys-Matusita distances are employed. The proposed band selection technique is compared with an FA-based method that actually employs a classifier, the well-known sequential forward selection, and particle swarm optimization algorithms. Experimental results show that the proposed algorithm outperforms others, providing an effective option for DR.
引用
收藏
页码:68 / 72
页数:5
相关论文
共 12 条
  • [1] Chang C.-I., 2003, HYPERSPECTRAL IMAGIN, P15, DOI [DOI 10.1007/978-1-4419-9170-6_2, 10.1007/978-1-4419-9170-6_2]
  • [2] Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    Chang, CI
    Du, Q
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (03): : 608 - 619
  • [3] Visual Method for Spectral Band Selection
    Ifarraguerri, Agustin
    Prairie, Michael W.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (02) : 101 - 106
  • [4] Locality-Preserving Discriminant Analysis in Kernel-Induced Feature Spaces for Hyperspectral Image Classification
    Li, Wei
    Prasad, Saurabh
    Fowler, James E.
    Bruce, Lori Mann
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (05) : 894 - 898
  • [5] Clustering-based hyperspectral band selection using information measures
    Martinez-Uso, Adolfo
    Pla, Filiberto
    Sotoca, Jose Martinez
    Garcia-Sevilla, Pedro
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (12): : 4158 - 4171
  • [6] Nature-Inspired Framework for Hyperspectral Band Selection
    Nakamura, Rodrigo Y. M.
    Garcia Fonseca, Leila Maria
    dos Santos, Jefersson Alex
    Torres, Ricardo da S.
    Yang, Xin-She
    Papa, Joao Papa
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (04): : 2126 - 2137
  • [7] Optimized Hyperspectral Band Selection Using Particle Swarm Optimization
    Su, Hongjun
    Du, Qian
    Chen, Genshe
    Du, Peijun
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2659 - 2670
  • [8] An Efficient Method for Supervised Hyperspectral Band Selection
    Yang, He
    Du, Qian
    Su, Hongjun
    Sheng, Yehua
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (01) : 138 - 142
  • [9] Yang X. S., 2008, Nature-Inspired Metaheuristic Algorithms, DOI DOI 10.1001/JAMA.1994.03520100096046
  • [10] Yang XS, 2009, LECT NOTES COMPUT SC, V5792, P169, DOI 10.1007/978-3-642-04944-6_14