On the optimality of recursive unbiased state estimation with unknown inputs

被引:51
作者
Kerwin, WS
Prince, JL
机构
[1] Univ Washington, Dept Radiol, Seattle, WA 98195 USA
[2] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
关键词
Kalman filters; optimal estimation; minimum variance; unbiased estimation;
D O I
10.1016/S0005-1098(00)00046-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For system models with unknown inputs, state estimates may be obtained using linear minimum-variance unbiased estimation. Here, a proof is presented showing that the optimal solution over the class of all linear unbiased estimates may be written in the form of a linear recursive filter, thereby validating previous work in this area. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1381 / 1383
页数:3
相关论文
共 4 条
[1]   Unbiased minimum variance estimation for systems with unknown exogenous inputs [J].
Darouach, M ;
Zasadzinski, M .
AUTOMATICA, 1997, 33 (04) :717-719
[3]  
Kalman R. E., 1960, Journal of Basic Engineering, V82, P35
[4]   UNBIASED MINIMUM-VARIANCE LINEAR STATE ESTIMATION [J].
KITANIDIS, PK .
AUTOMATICA, 1987, 23 (06) :775-778