Mitigation of PM2.5 and ozone pollution in Delhi. a sensitivity study during the pre-monsoon period

被引:62
作者
Chen, Ying [1 ,2 ]
Wild, Oliver [1 ,2 ]
Ryan, Edmund [1 ,9 ]
Sahu, Saroj Kumar [4 ]
Lowe, Douglas [5 ]
Archer-Nicholls, Scott [6 ]
Wang, Yu [5 ]
McFiggans, Gordon [5 ]
Ansari, Tabish [1 ]
Singh, Vikas [7 ]
Sokhi, Ranjeet S. [8 ]
Archibald, Alex [6 ]
Beig, Gufran [3 ]
机构
[1] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England
[2] Univ Lancaster, Data Sci Inst, Lancaster LA1 4YW, England
[3] Indian Inst Trop Meteorol, Pune, Maharashtra, India
[4] Utkal Univ, Dept Bot, Environm Sci, Bhubaneswar, India
[5] Univ Manchester, Ctr Atmospher Sci, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England
[6] Univ Cambridge, Dept Chem, NCAS Climate, Cambridge CB2 1EW, England
[7] Natl Atmospher Res Lab, Gadanki, Andhra Pradesh, India
[8] Univ Hertfordshire, Ctr Atmospher & Climate Phys Res, Hatfield, Herts, England
[9] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
基金
英国自然环境研究理事会;
关键词
TIANJIN-HEBEI REGION; AIR-QUALITY; WRF-CHEM; FINE PARTICLES; NORTHERN INDIA; SURFACE OZONE; AEROSOL MODEL; SOUTH-ASIA; DUST STORM; EMISSIONS;
D O I
10.5194/acp-20-499-2020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fine particulate matter (PM2.5) and surface ozone (O-3) are major air pollutants in megacities such as Delhi, but the design of suitable mitigation strategies is challenging. Some strategies for reducing PM2.5 may have the notable side effect of increasing O-3. Here, we demonstrate a numerical framework for investigating the impacts of mitigation strategies on both PM2.5 and O-3 in Delhi. We use Gaussian process emulation to generate a computationally efficient surrogate for a regional air quality model (WRF-Chem). This allows us to perform global sensitivity analysis to identify the major sources of air pollution and to generate emission-sector-based pollutant response surfaces to inform mitigation policy development. Based on more than 100 000 emulation runs during the pre-monsoon period (peak O-3 season), our global sensitivity analysis shows that local traffic emissions from the Delhi city region and regional transport of pollution emitted from the National Capital Region (NCR) surrounding Delhi are dominant factors influencing PM2.5 and O-3 in Delhi. They together govern the O-3 peak and PM2.5 concentration during daytime. Regional transport contributes about 80% of the PM2.5 variation during the night. Reducing traffic emissions in Delhi alone (e.g. by 50 %) would reduce PM2.5 by 15 %-20% but lead to a 20 %-25% increase in O-3. However, we show that reducing NCR regional emissions by 25 %-30% at the same time would further reduce PM2.5 by 5 %-10% in Delhi and avoid the O-3 increase. This study provides scientific evidence to support the need for joint coordination of controls on local and regional scales to achieve effective reduction in PM2.5 whilst minimising the risk of O-3 increase in Delhi.
引用
收藏
页码:499 / 514
页数:16
相关论文
共 102 条
[1]   Managing future air quality in megacities: A case study for Delhi [J].
Amann, Markus ;
Purohit, Pallav ;
Bhanarkar, Anil D. ;
Bertok, Imrich ;
Borken-Kleefeld, Jens ;
Cofala, Janusz ;
Heyes, Chris ;
Kiesewetter, Gregor ;
Klimont, Zbigniew ;
Liu, Jun ;
Majumdar, Dipanjali ;
Binh Nguyen ;
Rafaj, Peter ;
Rao, Padma S. ;
Sander, Robert ;
Schoepp, Wolfgang ;
Srivastava, Anjali ;
Vardhan, B. Harsh .
ATMOSPHERIC ENVIRONMENT, 2017, 161 :99-111
[2]   Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications [J].
Amann, Markus ;
Bertok, Imrich ;
Borken-Kleefeld, Jens ;
Cofala, Janusz ;
Heyes, Chris ;
Hoeglund-Isaksson, Lena ;
Klimont, Zbigniew ;
Nguyen, Binh ;
Posch, Maximilian ;
Rafaj, Peter ;
Sandler, Robert ;
Schoepp, Wolfgang ;
Wagner, Fabian ;
Winiwarter, Wilfried .
ENVIRONMENTAL MODELLING & SOFTWARE, 2011, 26 (12) :1489-1501
[3]  
[Anonymous], 2016, World Health Organisation, Global Information System on Alcohol and Health (GISAH)
[4]  
Ashworth K, 2013, NAT CLIM CHANGE, V3, P492, DOI [10.1038/NCLIMATE1788, 10.1038/nclimate1788]
[5]  
Aslam M.Y., 2017, AM J CLIM CHANGE, V6, P294, DOI DOI 10.4236/AJCC.2017.62015
[6]   Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution [J].
Avnery, Shiri ;
Mauzerall, Denise L. ;
Liu, Junfeng ;
Horowitz, Larry W. .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (13) :2297-2309
[7]   Diagnostics for Gaussian Process Emulators [J].
Bastos, Leonardo S. ;
O'Hagan, Anthony .
TECHNOMETRICS, 2009, 51 (04) :425-438
[8]   Evaluating population exposure to environmental pollutants during Deepavali fireworks displays using air quality measurements of the SAFAR network [J].
Beig, G. ;
Chate, D. M. ;
Ghude, Sachin D. ;
Ali, K. ;
Satpute, Trupti ;
Sahu, S. K. ;
Parkhi, Neha ;
Trimbake, H. K. .
CHEMOSPHERE, 2013, 92 (01) :116-124
[9]   Large contribution of natural aerosols to uncertainty in indirect forcing [J].
Carslaw, K. S. ;
Lee, L. A. ;
Reddington, C. L. ;
Pringle, K. J. ;
Rap, A. ;
Forster, P. M. ;
Mann, G. W. ;
Spracklen, D. V. ;
Woodhouse, M. T. ;
Regayre, L. A. ;
Pierce, J. R. .
NATURE, 2013, 503 (7474) :67-+
[10]   Uncertainties Caused by Major Meteorological Analysis Data Sets in Simulating Air Quality Over India [J].
Chatani, Satoru ;
Sharma, Sumit .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (11) :6230-6247