Semi-Supervised Multi-View Ensemble Learning Based On Extracting Cross-View Correlation

被引:4
|
作者
Zall, Raziyeh [1 ]
Keyvanpour, Mohammad Reza [1 ]
机构
[1] Alzahra Univ, Dept Comp Engn, Tehran, Iran
关键词
boosting; correlation; classification algorithm; sampling methods; semi-supervised learning; ALGORITHM;
D O I
10.4316/AECE.2016.02015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Correlated information between different views incorporate useful for learning in multi view data. Canonical correlation analysis (CCA) plays important role to extract these information. However, CCA only extracts the correlated information between paired data and cannot preserve correlated information between within-class samples. In this paper, we propose a two-view semi-supervised learning method called semi-supervised random correlation ensemble base on spectral clustering (SS_RCE). SS_RCE uses a multi-view method based on spectral clustering which takes advantage of discriminative information in multiple views to estimate labeling information of unlabeled samples. In order to enhance discriminative power of CCA features, we incorporate the labeling information of both unlabeled and labeled samples into CCA. Then, we use random correlation between within-class samples from cross view to extract diverse correlated features for training component classifiers. Furthermore, we extend a general model namely SSMV_RCE to construct ensemble method to tackle semi-supervised learning in the presence of multiple views. Finally, we compare the proposed methods with existing multi-view feature extraction methods using multi-view semi-supervised ensembles. Experimental results on various multi-view data sets are presented to demonstrate the effectiveness of the proposed methods.
引用
收藏
页码:111 / 124
页数:14
相关论文
共 50 条
  • [1] View Construction for Multi-view Semi-supervised Learning
    Sun, Shiliang
    Jin, Feng
    Tu, Wenting
    ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 595 - 601
  • [2] Multi-View Semi-Supervised Learning Based Image Annotation
    Sun, Chengjian
    Zhu, Songhao
    Shi, Zhe
    MODERN TECHNOLOGIES IN MATERIALS, MECHANICS AND INTELLIGENT SYSTEMS, 2014, 1049 : 1486 - 1489
  • [3] Active Semi-Supervised Clustering based on Multi-View Learning
    Zhang, Xue
    Zhao, Dong-yan
    Wei, Shan
    Xiao, Wang-xin
    PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL III, 2009, : 495 - +
  • [4] Multi-view semi-supervised learning for image classification
    Zhu, Songhao
    Sun, Xian
    Jin, Dongliang
    NEUROCOMPUTING, 2016, 208 : 136 - 142
  • [5] Multi-view Learning for Semi-supervised Sentiment Classification
    Su, Yan
    Li, Shoushan
    Ju, Shengfeng
    Zhou, Guodong
    Li, Xiaojun
    2012 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2012), 2012, : 13 - 16
  • [6] A Multi-view Regularization Method for Semi-supervised Learning
    Wang, Jiao
    Luo, Siwei
    Li, Yan
    ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 1, PROCEEDINGS, 2010, 6063 : 444 - 449
  • [7] Semi-Supervised Multi-View Correlation Feature Learning with Application to Webpage Classification
    Jing, Xiao-Yuan
    Wu, Fei
    Dong, Xiwei
    Shan, Shiguang
    Chen, Songcan
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1374 - 1381
  • [8] Human Action Recognition Based on Multi-view Semi-supervised Learning
    Tang C.
    Wang W.
    Wang X.
    Zhang C.
    Zou L.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (04): : 376 - 384
  • [9] FedCVT: Semi-supervised Vertical Federated Learning with Cross-view Training
    Kang, Yan
    Liu, Yang
    Liang, Xinle
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (04)
  • [10] Semi-supervised surface object detection based on multi-view cross-consistency learning
    Feng J.
    Li B.
    Tian L.
    Dong C.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2023, 55 (04): : 107 - 114